Covid-19 Research

Open Access
Research Article
OCLC

De Novo Transcriptome Assembly and Annotation of the Temperate Asymbiotic Coral Chromonephthea Hirotai Google Scholar

Read • Cite • Share — permanent Open Access hosting with DOI tracking

Lee K, Sung-Jin H, Lee T, Yum S and Woo S*

Volume7-Issue1
Dates: Received: 2026-01-05 | Accepted: 2026-01-13 | Published: 2026-01-16
Pages: 1-11

Abstract

Chromonephthea hirotai (Anthozoa; Alcyonacea; Nephtheidae) is a little-known species of soft coral that inhabits the seas around South Korea, Japan, and the wider Indo-Pacific region. In Korea, the species occurs mainly in southern coastal areas. A marked decline in the coral’s wild population has been witnessed in recent years due to climate change, and it has been identified as a species of important scientific value. However, there is little information on the genomic profile of this species, particularly regarding its stages of development, immune system, and ability to deal with environmental change. In this study, we performed a transcriptomic analysis of samples from a colony of C. hirotai. Three C. hirotai individuals were collected near Chujado, South Korea, and total RNA was extracted to construct the transcriptome assembly. The Illumina HiSeq 3000 platform was used for transcriptome sequencing, and the sequences were predicted by de novo assembly and analysis of the coding regions. Overall, 48,671 out of 129,086 unigenes were annotated in at least one public database, meaning that the overall annotation ratio of the C. hirotai assembly was 37.7%. The average length and N50 metric were 654.65 and 1118 base pairs, respectively. This study constitutes the primary documentation of the transcriptome assembly of C. hirotai in the colony phase, offering valuable insights into the genomics of this coral species. We anticipate that a framework will be developed to elucidate the mechanisms by which the azooxanthellate coral species C. hirotai responds to and develops in relation to various environmental stressors.

FullText HTML FullText PDF DOI: 10.37871/jbres2254


Certificate of Publication




Copyright

© 2026 Lee K. et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Lee K, Sung-Jin H, Lee T, Yum S, Woo S. De Novo Transcriptome Assembly and Annotation of the Temperate Asymbiotic Coral Chromonephthea Hirotai. J Biomed Res Environ Sci. 2026 Jan 16; 7(1): 11. Doi: 10.37871/jbres2254


Subject area(s)

References


  1. Costanza R, De Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, Turner RK. Changes in the global value of ecosystem services. Glob Environ Change. 2014;26:152-158. doi: 10.1016/j.gloenvcha.2014.04.002.
  2. Roberts CM, McClean CJ, Veron JE, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science. 2002 Feb 15;295(5558):1280-4. doi: 10.1126/science.1067728. PMID: 11847338.
  3. Pereira PHC, Lima G V, Pontes AVF, Côrtes LGF, Gomes E, Sampaio CLS, Pinto TK, Miranda RJ, Cardoso ATC, Araujo JC, Seoane JCS. Unprecedented coral mortality on Southwestern Atlantic coral reefs following major thermal stress. Front Mar Sci. 2022;9:725778. doi: 10.3389/fmars.2022.725778.
  4. Doorga JRS, Pasnin O, Dindoyal Y, Diaz C. Risk assessment of coral reef vulnerability to climate change and stressors in tropical islands: The case of Mauritius. Sci Total Environ. 2023 Sep 15;891:164648. doi: 10.1016/j.scitotenv.2023.164648. Epub 2023 Jun 7. PMID: 37290662.
  5. McWhorter JK, Halloran PR, Roff G, Mumby PJ. Climate change impacts on mesophotic regions of the Great Barrier Reef. Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2303336121. doi: 10.1073/pnas.2303336121. Epub 2024 Apr 8. PMID: 38588432; PMCID: PMC11032494.
  6. Doherty ML, Johnson JV, Goodbody-Gringley G. Widespread coral bleaching and mass mortality during the 2023-2024 marine heatwave in Little Cayman. PLoS One. 2025 May 2;20(5):e0322636. doi: 10.1371/journal.pone.0322636. PMID: 40315251; PMCID: PMC12047782.
  7. Howells EJ, Abrego D, Liew YJ, Burt JA, Meyer E, Aranda M. Enhancing the heat tolerance of reef-building corals to future warming. Sci Adv. 2021 Aug 20;7(34):eabg6070. doi: 10.1126/sciadv.abg6070. PMID: 34417178; PMCID: PMC8378819.
  8. Luo Y, Huang W, Yu K, Li M, Chen B, Huang X, Qin Z. Genetic diversity and structure of tropical Porites lutea populations highlight their high adaptive potential to environmental changes in the South China Sea. Front Mar Sci. 2022;9:791149. doi: 10.3389/fmars.2022.791149.
  9. Manullang C, Hanahara N, Tarigan AI, Abe Y, Furukawa M, Morita M. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages. BMC Genomics. 2025 Jan 14;26(1):36. doi: 10.1186/s12864-024-11194-1. PMID: 39810102; PMCID: PMC11730148.
  10. Montano S. The extraordinary importance of coral-associated fauna. Diversity. 2020;12(9):357. doi: 10.3390/d12090357.
  11. Gibson RN, Atkinson RJA, Gordon JDM. Oceanography and marine biology: An annual review. Boca Raton (FL): CRC Press; 2007.doi:10.1201/9781420050943.
  12. Fishelson L. Coral and fish biocoenosis: Ecological cells gradually maturing in complexity, species composition and energy turnover. Environ Biol Fishes. 2003;68(4):391-405. doi: 10.1023/B:EBFI.0000005752.31181.3D.
  13. Hein MY, Beeden R, Birtles A, Gardiner NM, Le Berre T, Levy J, Marshall N, Scott CM, Terry L, Willis BL. Coral restoration effectiveness: Multiregional snapshots of the long-term responses of coral assemblages to restoration. Diversity. 2020;12(4):153. doi: 10.3390/d12040153.
  14. Shaver EC, McLeod E, Hein MY, Palumbi SR, Quigley K, Vardi T, Mumby PJ, Smith D, Montoya-Maya P, Muller EM, Banaszak AT, McLeod IM, Wachenfeld D. A roadmap to integrating resilience into the practice of coral reef restoration. Glob Chang Biol. 2022 Aug;28(16):4751-4764. doi: 10.1111/gcb.16212. Epub 2022 May 19. PMID: 35451154; PMCID: PMC9545251.
  15. Rosic N, Kaniewska P, Chan CK, Ling EY, Edwards D, Dove S, Hoegh-Guldberg O. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics. 2014 Dec 2;15:1052. doi: 10.1186/1471-2164-15-1052. PMID: 25467196; PMCID: PMC4301396.
  16. Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, Banc-Prandi G, Fine M, Meibom A. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc Natl Acad Sci U S A. 2021 May 11;118(19):e2023298118. doi: 10.1073/pnas.2023298118. PMID: 33941698; PMCID: PMC8126839.
  17. Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics. 2024 Sep 6;25(1):840. doi: 10.1186/s12864-024-10742-z. PMID: 39242500; PMCID: PMC11380378.
  18. Han T, Liao X, Guo Z, Chen JY, He C, Lu Z. Comparative transcriptome analysis reveals deep molecular landscapes in stony coral Montipora clade. Front Genet. 2023 Nov 7;14:1297483. doi: 10.3389/fgene.2023.1297483. PMID: 38028626; PMCID: PMC10662330.
  19. Pepino MMC, Manalili SE, Sekida S, Mezaki T, Okumura T, Kubota S. Gene expression profiles of Japanese precious coral Corallium japonicum during gametogenesis. PeerJ. 2024 Apr 16;12:e17182. doi: 10.7717/peerj.17182. PMID: 38646482; PMCID: PMC11027906.
  20. Young BD, Williamson OM, Kron NS, Andrade Rodriguez N, Isma LM, MacKnight NJ, Muller EM, Rosales SM, Sirotzke SM, Traylor-Knowles N, Williams SD, Studivan MS. Annotated genome and transcriptome of the endangered Caribbean mountainous star coral (Orbicella faveolata) using PacBio long-read sequencing. BMC Genomics. 2024 Feb 29;25(1):226. doi: 10.1186/s12864-024-10092-w. PMID: 38424480; PMCID: PMC10905781.
  21. Lock C, Gabriel MM, Bentlage B. Transcriptomic signatures across a critical sedimentation threshold in a major reef-building coral. Front Physiol. 2024 Jun 11;15:1303681. doi: 10.3389/fphys.2024.1303681. PMID: 38919851; PMCID: PMC11196755.
  22. Yuyama I, Higuchi T, Mezaki T, Tashiro H, Ikeo K. Metatranscriptomic Analysis of Corals Inoculated With Tolerant and Non-Tolerant Symbiont Exposed to High Temperature and Light Stress. Front Physiol. 2022 Apr 11;13:806171. doi: 10.3389/fphys.2022.806171. PMID: 35480050; PMCID: PMC9037784.
  23. Utinomi H. Eunephthya from middle Japan. Publ Seto Mar Biol Lab. 1951;2(1):27-40.
  24. Song JI. A study on the classification of the Korean Anthozoa: 2. Alcyonacea. Korean J Zool. 1976;19(2):51-62.
  25. van Ofwegen LP. A new genus of nephtheid soft corals (Octocorallia: Alcyonacea: Nephtheidae) from the Indo-Pacific. Zool Meded Leiden. 2005;79:1-236.
  26. Sejong (KR): Ministry of oceans and fisheries. Marine Environmental Information Portal; 2025.
  27. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398. doi: 10.1155/2009/574398. Erratum in: J Biomed Biotechnol. 2013;2013:628968. PMID: 20011662; PMCID: PMC2789530.
  28. Woo S, Yum S, Yoon M, Kim SH, Lee JH, Kim JH, Lee TK. Efficient isolation of intact RNA from the soft coral Scleronephthya gracillimum for gene expression analyses. Anim Cells Syst. 2005;9(4):205-209. doi: 10.1080/17386357.2005.9647272.
  29. Zepeda B, Verdonk JC. RNA Extraction from Plant Tissue with Homemade Acid Guanidinium Thiocyanate Phenol Chloroform (AGPC). Curr Protoc. 2022 Jan;2(1):e351. doi: 10.1002/cpz1.351. PMID: 35077031.
  30. Andrews S. FastQC: A quality control tool for high throughput sequence data. Cambridge (UK): Babraham Institute; 2010.
  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1. PMID: 24695404; PMCID: PMC4103590.
  32. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011 May 15;29(7):644-52. doi: 10.1038/nbt.1883. PMID: 21572440; PMCID: PMC3571712.
  33. Poon RN, Westwood TA, Laeverenz-Schlogelhofer H, Brodrick E, Craggs J, Keaveny EE, Jékely G, Wan KY. Ciliary propulsion and metachronal coordination in reef coral larvae. Phys Rev Res. 2023;5(4):L042037. doi: 10.1103/PhysRevResearch.5.L042037.
  34. Ricardo GF, Jones RJ, Clode PL, Negri AP. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments. PLoS One. 2016 Sep 28;11(9):e0162743. doi: 10.1371/journal.pone.0162743. PMID: 27682581; PMCID: PMC5040398.
  35. Kiel PM, Prakash VN. Coral physiology: Going with the ciliary flow. Curr Biol. 2022 Oct 10;32(19):R998-R1000. doi: 10.1016/j.cub.2022.08.049. PMID: 36220095.
  36. Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11438-56. doi: 10.1002/anie.201203912. Epub 2012 Oct 19. PMID: 23086912.
  37. Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020 Mar;10(3):190290. doi: 10.1098/rsob.190290. Epub 2020 Mar 11. PMID: 32156170; PMCID: PMC7125958.
  38. Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):611-31. doi: 10.1002/wrna.79. Epub 2011 Mar 23. PMID: 21823225.
  39. Söll D, Kline LK. rRNA methylation. In: The enzymes. New York (NY): Academic Press; 1982. p.557-566. doi: 10.1016/S1874-6047(08)60290-5.
  40. Shapiro OH, Fernandez VI, Garren M, Guasto JS, Debaillon-Vesque FP, Kramarsky-Winter E, Vardi A, Stocker R. Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13391-6. doi: 10.1073/pnas.1323094111. Epub 2014 Sep 5. PMID: 25192936; PMCID: PMC4169935.
  41. Tan R, Foster PJ, Needleman DJ, McKenney RJ. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell. 2018 Jan 22;44(2):233-247.e4. doi: 10.1016/j.devcel.2017.12.023. PMID: 29401420; PMCID: PMC6082141.
  42. Zamer WE, Hoffmann RJ. Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile. Proc Natl Acad Sci USA. 1989;86(8):2737-2741. doi: 10.1073/pnas.86.8.2737.
  43. Myllylä R, Koivu J, Pihlajaniemi T, Kivirikko KI. Protein disulphide-isomerase activity in various cells synthesizing collagen. Eur J Biochem. 1983 Jul 15;134(1):7-11. doi: 10.1111/j.1432-1033.1983.tb07523.x. PMID: 6861763.


Comments


Publish with JBRES — Peer-reviewed, multidisciplinary Open Access with rapid review, DOI, and global visibility.
Double-Blind CrossRef DOI Discoverable