Covid-19 Research

Open Access
Review Article
OCLC

Optical Properties of Excitons in CdSe Nanoplatelets Google Scholar

Read • Cite • Share — permanent Open Access hosting with DOI tracking

Czajkowski G*

Volume7-Issue1
Dates: Received: 2025-10-24 | Accepted: 2025-11-13 | Published: 2026-01-08
Pages: 19

Abstract

We show how to calculate the linear and nonlinear optical functions of CdSe nanoplatelets, taking into account the effect of a dielectric confinement on excitonic states. We consider both stationary and non-stationary excitation regime. We obtain obtain analytical expressions for the absorption coefficient, the exciton resonance energy and binding energy of nanoplatelets. The impact of plate geometry (thickness, lateral dimension) on the spectrum is discussed. In the nonlinear case we analyze the impact of temperature. For the short-pulse excitation the time dependence of the spectra is considered. The results are compared with the available experimental data.

FullText HTML FullText PDF DOI: 10.37871/jbres2252


Certificate of Publication




Copyright

© 2026 Czajkowski G. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Czajkowski G. Optical Properties of Excitons in CdSe Nanoplatelets. J Biomed Res Environ Sci. 2026 Jan 08; 7(1): 19. Doi: 10.37871/jbres2252


Subject area(s)

References


  1. Ekimov A, Onushchenko A. Quantum size effect in 3- dimensional microscopic semiconductor crystals. JETP Lett. 1981;34:345.
  2. Yu J, Chen R. Optical properties and applications of two-dimensional CdSe Nanoplatelets. InfoMat. 2020;2:905.
  3. Dutta A, Medda A, Patra A. Recent advances and perspectives on colloidal semiconductor Nanoplatelets for optoelectronic applications. The Journal of Physical Chemistry C. 2021;125:20.
  4. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706.
  5. Joo J, Son JS, Kwon SG, Yu JH, Hyeon T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J Am Chem Soc. 2006 May 3;128(17):5632-3. doi: 10.1021/ja0601686. PMID: 16637619.
  6. Benchamekh R, Gippius NA, Even J. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys Rev B. 2014;89:035307.
  7. Zelewski SJ, Nawrot KC, Zak A, Gladysiewicz M, Nyk M, Kudrawiec R. Exciton Binding Energy of Two-Dimensional Highly Luminescent Colloidal Nanostructures Determined from Combined Optical and Photoacoustic Spectroscopies. J Phys Chem Lett. 2019 Jun 20;10(12):3459-3464. doi: 10.1021/acs.jpclett.9b00591. Epub 2019 Jun 10. PMID: 31180226.
  8. Shornikova EV, Yakovlev DR, Gippius NA, Qiang G, Dubertret B, Khan AH, Di Giacomo A, Moreels I, Bayer M. Exciton Binding Energy in CdSe Nanoplatelets Measured by One- and Two-Photon Absorption. Nano Lett. 2021 Dec 22;21(24):10525-10531. doi: 10.1021/acs.nanolett.1c04159. Epub 2021 Dec 7. PMID: 34874734; PMCID: PMC8886564.
  9. Achtstein AW, Schliwa A, Prudnikau A, Hardzei M, Artemyev MV, Thomsen C, Woggon U. Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012 Jun 13;12(6):3151-7. doi: 10.1021/nl301071n. Epub 2012 May 29. PMID: 22625408.
  10. Chakrabarti P, Morin K, Lagarde D, Marie X, Boulier T. Direct Measurement of the Lifetime and Coherence Time of Cu_{2}O Rydberg Excitons. Phys Rev Lett. 2025 Mar 28;134(12):126902. doi: 10.1103/PhysRevLett.134.126902. PMID: 40215532.
  11. Baghdasaryan DA, Harutyunyan VA, Hayrapetyan DB, Kazaryan EM, Baskoutas S, Sarkisyan HA. Exciton States and Optical Absorption in CdSe and PbS Nanoplatelets. Nanomaterials (Basel). 2022 Oct 20;12(20):3690. doi: 10.3390/nano12203690. PMID: 36296880; PMCID: PMC9611409.
  12. Brumberg A, Harvey SM, Philbin JP, Diroll BT, Lee B, Crooker SA, Wasielewski MR, Rabani E, Schaller RD. Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets via Magneto-optical Spectroscopy. ACS Nano. 2019 Aug 27;13(8):8589-8596. doi: 10.1021/acsnano.9b02008. Epub 2019 Jun 28. PMID: 31251582.
  13. Ziemkiewicz D, Knez D, Garcia EP, Zieli?ska-Raczy?ska S, Czajkowski G, Salandrino A, Kharintsev SS, Noskov AI, Potma EO, Fishman DA. Two-photon absorption in silicon using the real density matrix approach. J Chem Phys. 2024 Oct 14;161(14):144117. doi: 10.1063/5.0219329. PMID: 39392143.
  14. Ziemkiewicz D, Czajkowski G, Zieli´nska-Raczy´nska S. Optical properties of Rydberg excitons in Cu2O-based superlattices. Phys. Rev. B 2024; 109: 085309.
  15. Karpinski K, Czajkowski G. Dynamics of Cu2O Rydberg excitons – real density matrix approach. Open Accsess J Phys Math. 2025;1(2):01.
  16. Ziemkiewicz D, Czajkowski G, Zieli´nska-Raczy´nska S. Optical properties of excitons in CdSe nanoplatelets and disks: real density matrix approach. arXiv 2024;2406.01144v1 [physics.optics]: 3 Jun. 4.
  17. Chuu DS, Hsiao CM, Mei WN. Hydrogenic impurity states in quantum dots and quantum wires. Phys Rev B Condens Matter. 1992 Aug 15;46(7):3898-3905. doi: 10.1103/physrevb.46.3898. PMID: 10004117.
  18. Ziemkiewicz D, Czajkowski G, Karpi´nski K, Zieli´nska-Raczy´nska S. Excitonsin Cu2O: From quantum dots to bulk crystals and additional boundary conditions for Rydberg exciton-polaritons. Phys. Rev. B 2020; 101: 205202.
  19. Abramowitz M, Stegun I. Handbook of Mathematical Functions. Dover Publications, New York. 1965.
  20. Landau LD, Lifshitz EM. Electrodynamics of continuous Media. In: Lifshitz EM, Pitaevskii LP editors. 2nd ed. Pergamon Press, Oxford; 1984.
  21. Caicedo DS, Caprioglio P, Lehmann F. Effects of quantum and dielectric confinement on the emission of Cs-Pb-Br composites. Adv Func Mater. 2023;33:2305240.
  22. Quanqin D, Yanli S, Dongmei L, et al. Temperature dependence of band gap in CdSe nanocrystals. Chemical Physics Letters. 2007;439:65. doi: 10.1016/j.cplett.2007.03.034.
  23. Zhao H, Wachter S, Kalt H. Effect of quantum confinement on exciton-phonon interactions. Phys Rev B. 2002;42:11218.
  24. Bai P, Hu A, Deng Y, Tang Z, Yu W, Hao Y, Yang S, Zhu Y, Xiao L, Jin Y, Gao Y. CdSe/CdSeS Nanoplatelet Light-Emitting Diodes with Ultrapure Green Color and High External Quantum Efficiency. J Phys Chem Lett. 2022 Oct 6;13(39):9051-9057. doi: 10.1021/acs.jpclett.2c02633. Epub 2022 Sep 25. PMID: 36153736.


Comments


Publish with JBRES — Peer-reviewed, multidisciplinary Open Access with rapid review, DOI, and global visibility.
Double-Blind CrossRef DOI Discoverable