Covid-19 Research

Open Access
Research Article
OCLC

Detoxification and Characterization of an Alpha Nanotoxoid of Clostridium septicum In vitro and In vivo Google Scholar

Read • Cite • Share — permanent Open Access hosting with DOI tracking

Emami T, Alimolaei M, Pardis R, Abbasi E, Khiav LA and Golchinfar F

Volume6-Issue12
Dates: Received: 2025-12-07 | Accepted: 2025-12-24 | Published: 2025-12-30
Pages: 2017-2031

Abstract

One solution to eliminate toxins is to trap them in polymer nanoparticles. Alpha clostridial toxins typically form pores in the cell membrane, allowing them to enter cells and exert their destructive and deadly effects. However, using red blood cells whose membranes are coated with clostridial nanoparticles and toxins can neutralize the virulence of the toxin more efficiently through the spontaneous trapping of toxin nanoparticles in these membranes.
In this research, Clostridium septicum was cultured, and its alpha toxin was semi-purified using chromatography and ultrafiltration. The alpha toxin was encapsulated in PLGA polymer nanoparticles, and red blood cells were prepared from mice and turned into red blood cell silhouettes. The polymer nanoparticles were then enclosed in the red blood cell silhouettes using an extruder, and the size of the resulting nanoparticles was evaluated using electron microscopy. This study demonstrates successful encapsulation, detoxification, and uptake by macrophages, but immunogenicity remains to be evaluated in dedicated vaccination studies. The formulated nanotoxoid showed reduced local toxicity and evidence of biocompatibility in mice, supporting its potential as a candidate for future vaccine development. The manuscript now describes the platform as and application of an established nanotoxoid strategy to a distinct toxin, rather than presenting it as a new concept in nanotechnology.

FullText HTML FullText PDF DOI: 10.37871/jbres2247


Certificate of Publication




Copyright

© 2025 Emami T, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Emami T, Alimolaei M, Pardis R, Abbasi E, Khiav LA, Golchinfar F. Detoxifi cation and Characterization of an Alpha Nanotoxoid of Clostridium septicum In vitro and In vivo. J Biomed Res Environ Sci. 2025 Dec 30; 6(12): 2017-2031. doi: 10.37871/jbres2247, Article ID: JBRES2247, Available at: https://www.jelsciences.com/articles/jbres2247.pdf


Subject area(s)

References


  1. Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A, Geny B, Vandewalle A, Popoff MR. Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis. Toxicon. 2010 Jan;55(1):61-72. doi: 10.1016/j.toxicon.2009.06.037. Epub 2009 Jul 24. PMID: 19632260.
  2. Tweten RK, Parker MW, Johnson AE. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol. 2001;257:15-33. doi: 10.1007/978-3-642-56508-3_2. PMID: 11417120.
  3. Kennedy CL, Krejany EO, Young LF, O'Connor JR, Awad MM, Boyd RL, Emmins JJ, Lyras D, Rood JI. The alpha-toxin of Clostridium septicum is essential for virulence. Mol Microbiol. 2005 Sep;57(5):1357-66. doi: 10.1111/j.1365-2958.2005.04774.x. PMID: 16102005.
  4. Kennedy CL, Lyras D, Cordner LM, Melton-Witt J, Emmins JJ, Tweten RK, Rood JI. Pore-forming activity of alpha-toxin is essential for clostridium septicum-mediated myonecrosis. Infect Immun. 2009 Mar;77(3):943-51. doi: 10.1128/IAI.01267-08. Epub 2009 Jan 12. PMID: 19139192; PMCID: PMC2643643.
  5. Ballard J, Bryant A, Stevens D, Tweten RK. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect Immun. 1992 Mar;60(3):784-90. doi: 10.1128/iai.60.3.784-790.1992. PMID: 1541552; PMCID: PMC257555.
  6. Ballard J, Sokolov Y, Yuan WL, Kagan BL, Tweten RK. Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol. 1993 Nov;10(3):627-34. doi: 10.1111/j.1365-2958.1993.tb00934.x. PMID: 7968539.
  7. Alves MLF, Ferreira MRA, Donassolo RA, Rodrigues RR, Conceição FR. Clostridium septicum: A review in the light of alpha-toxin and development of vaccines. Vaccine. 2021 Aug 16;39(35):4949-4956. doi: 10.1016/j.vaccine.2021.07.019. Epub 2021 Jul 24. PMID: 34312008.
  8. Hu CM, Zhang L. Nanotoxoid Vaccines. Nano Today. 2014 Aug 1;9(4):401-404. doi: 10.1016/j.nantod.2014.06.001. PMID: 25285152; PMCID: PMC4180402.
  9. Scheiblhofer S, Laimer J, Machado Y, Weiss R, Thalhamer J. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev Vaccines. 2017 May;16(5):479-489. doi: 10.1080/14760584.2017.1306441. Epub 2017 Mar 24. PMID: 28290225; PMCID: PMC5490637.
  10. Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics. 2022 Aug 11;14(8):1671. doi: 10.3390/pharmaceutics14081671. PMID: 36015297; PMCID: PMC9414397.
  11. Hu CM, Fang RH, Luk BT, Zhang L. Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol. 2013 Dec;8(12):933-8. doi: 10.1038/nnano.2013.254. Epub 2013 Dec 1. PMID: 24292514; PMCID: PMC3878426.
  12. Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjug Chem. 2018 Mar 21;29(3):604-612. doi: 10.1021/acs.bioconjchem.7b00692. Epub 2017 Dec 27. PMID: 29241006; PMCID: PMC5893865.
  13. Fang RH, Luk BT, Hu CM, Zhang L. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv Drug Deliv Rev. 2015 Aug 1;90:69-80. doi: 10.1016/j.addr.2015.04.001. Epub 2015 Apr 11. PMID: 25868452; PMCID: PMC4547889.
  14. Escajadillo T, Nizet V. Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel). 2018 Dec 17;10(12):542. doi: 10.3390/toxins10120542. PMID: 30562923; PMCID: PMC6316385.
  15. Palacio J, Orozco VH, López BL. Effect of the molecular weight on the physicochemical properties of poly (lactic acid) nanoparticles and on the amount of ovalbumin adsorption. Journal of the Brazilian Chemical Society. 2011;22:2304-11.
  16. Hu CM, Fang RH, Luk BT, Zhang L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale. 2014 Jan 7;6(1):65-75. doi: 10.1039/c3nr05444f. Epub 2013 Nov 26. PMID: 24280870.
  17. Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B. 2019 Jul;9(4):675-689. doi: 10.1016/j.apsb.2019.01.011. Epub 2019 Jan 24. PMID: 31384529; PMCID: PMC6663920.
  18. Welsh CT. Microbiology: a laboratory manual: Pearson; 2019.
  19. Cortiñas TI, Mattar MA, Stefanini de Guzmán AM. Alpha-toxin production by Clostridium septicum at different culture conditions. Anaerobe. 1997 Apr-Jun;3(2-3):199-202. doi: 10.1006/anae.1997.0105. PMID: 16887590.
  20. Ahmad SS, Dalby PA. Thermodynamic parameters for salt-induced reversible protein precipitation from automated microscale experiments. Biotechnol Bioeng. 2011 Feb;108(2):322-32. doi: 10.1002/bit.22957. PMID: 20872822.
  21. Daas A, Behr-Gross ME, Bruckner L, Redhead K. Collaborative study for the validation of cell line assays for in-process toxicity and antigenicity testing of Clostridium septicum vaccine antigens - Part 1. Pharmeur Bio Sci Notes. 2020;2020:53-124. PMID: 32589137.
  22. Scholes PD, Coombes AG, Illum L, Davis SS, Watts JF, Ustariz C, Vert M, Davies MC. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release. 1999 Jun 2;59(3):261-78. doi: 10.1016/s0168-3659(98)00138-2. PMID: 10332059.
  23. Feczkó T, Tóth J, Dósa G, Gyenis J. Optimization of protein encapsulation in PLGA nanoparticles. Chemical Engineering and Processing: Process Intensification. 2011;50(8):757-765.
  24. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10980-5. doi: 10.1073/pnas.1106634108. Epub 2011 Jun 20. PMID: 21690347; PMCID: PMC3131364.
  25. Emami T, Nazari A, Jaafari M. Design, Fabrication and Characterization of Nanoliposomes Containing Snake Venom of Pseudocerastes persicus. Venoms and Toxins. 2022;2:e060122200043.
  26. Sharma L, Wu W, Dholakiya SL, Gorasiya S, Wu J, Sitapara R, Patel V, Wang M, Zur M, Reddy S, Siegelaub N, Bamba K, Barile FA, Mantell LL. Assessment of phagocytic activity of cultured macrophages using fluorescence microscopy and flow cytometry. Methods Mol Biol. 2014;1172:137-45. doi: 10.1007/978-1-4939-0928-5_12. PMID: 24908301.
  27. Jonderian A, Maalouf R. Formulation and In vitro Interaction of Rhodamine-B Loaded PLGA Nanoparticles with Cardiac Myocytes. Front Pharmacol. 2016 Dec 6;7:458. doi: 10.3389/fphar.2016.00458. PMID: 27999542; PMCID: PMC5138196.
  28. Chaganti LK, Venkatakrishnan N, Bose K. An efficient method for FITC labelling of proteins using tandem affinity purification. Biosci Rep. 2018 Dec 11;38(6):BSR20181764. doi: 10.1042/BSR20181764. PMID: 30413608; PMCID: PMC6294648.
  29. Gordon S. Phagocytosis: an immunobiologic process. Immunity. 2016;44(3):463-75.
  30. Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol. 1994;32:1-4. doi: 10.1385/0-89603-268-X:1. PMID: 7951715.
  31. Rosales C, Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int. 2017;2017:9042851. doi: 10.1155/2017/9042851. Epub 2017 Jun 12. PMID: 28691037; PMCID: PMC5485277.
  32. Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol. 2020 Jun 2;11:1066. doi: 10.3389/fimmu.2020.01066. PMID: 32582172; PMCID: PMC7280488.
  33. Hang'ombe MB, Mukamoto M, Kohda T, Sugimoto N, Kozaki S. Cytotoxicity of Clostridium septicum alpha-toxin: its oligomerization in detergent resistant membranes of mammalian cells. Microb Pathog. 2004 Dec;37(6):279-86. doi: 10.1016/j.micpath.2004.09.001. Epub 2004 Nov 13. PMID: 15619423.
  34. Junior CAO, Silva ROS, Lobato FCF, Navarro MA, Uzal FA. Gas gangrene in mammals: a review. J Vet Diagn Invest. 2020 Mar;32(2):175-183. doi: 10.1177/1040638720905830. Epub 2020 Feb 21. PMID: 32081096; PMCID: PMC7081496.
  35. Abdolmohammadi Khiav L, Zahmatkesh A. Vaccination against pathogenic clostridia in animals: a review. Trop Anim Health Prod. 2021 Apr 23;53(2):284. doi: 10.1007/s11250-021-02728-w. PMID: 33891221; PMCID: PMC8062623.
  36. Zhou J, Krishnan N, Guo Z, Ventura CJ, Holay M, Zhang Q, Wei X, Gao W, Fang RH, Zhang L. Nanotoxoid vaccination protects against opportunistic bacterial infections arising from immunodeficiency. Sci Adv. 2022 Sep 9;8(36):eabq5492. doi: 10.1126/sciadv.abq5492. Epub 2022 Sep 9. PMID: 36083909; PMCID: PMC9462688.


Comments


Publish with JBRES — Peer-reviewed, multidisciplinary Open Access with rapid review, DOI, and global visibility.
Double-Blind CrossRef DOI Discoverable