Covid-19 Research

Open Access
Research Article
OCLC

IQ Index Interpretation, Using Fuzzy Sets Google Scholar

Read • Cite • Share — permanent Open Access hosting with DOI tracking

Volume6-Issue12
Dates: Received: 2025-11-21 | Accepted: 2025-12-26 | Published: 2025-12-29
Pages: 1957-1983

Abstract

Intelligence quotient IQ is a number claiming to measure the intelligence of a human been. This number is established based on psychometric testing. In use in the English-speaking world, there is a variety of individually administered IQ tests, having different degree of difficulty. In this paper, we propose a computational method of interpretation of IQ numbers taking into account on the ‘exigency’, of the person who make the interpretation. For this purpose, to different interpretations, having different ‘exigency degree’, different fuzzy sets are associated. This attachment makes the interpretation of IQ tests (Which claims to measure the natural world ‘intelligence’) computational comparable. Computations are presented and significant differences are revealed for example concerning computational identification of group of persons having intelligence in a given range. Understanding of fuzzy logic concepts, of operations with fuzzy sets and understanding of fuzzy logic operators are presented in this context.

FullText HTML FullText PDF DOI: 10.37871/jbres2243


Certificate of Publication




Copyright

How to cite this article

© 2025 Cojocaru AV. Distributed under Creative Commons CC-BY 4.0


Subject area(s)

References


  1. Klug WS, Cummings MR, Spencer CA, Palladino MA. Concepts of genetics. 10th ed. Pearson; 2012. p.719.
  2. Dunbar RI. The social brain hypothesis. Evolutionary Anthropology. 1998;6(5):178-90.
  3. Miller GF. The mating mind: How sexual choice shaped the evolution of human nature. 1st ed. New York: Doubleday; 2000. p. 292-340.
  4. Flinn MV, Geary DC, Ward CV. Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior. 2005;26(1):10-46.
  5. Thomas W, Karenleigh OA, Lambros M. 4E cognition in the lower Palaeolithic. Adaptive Behavior. 2021;29(2):99-106. doi: 10.1177/1059712320967184.
  6. Neisser U, Boodoo G, Bouchard TJJ, Boykin AW, Brody N, Ceci SJ, Halpern DF, Loehlin JC, Perloff R, Sternberg RJ, Urbina S. Intelligence: Knowns and unknowns. American Psychologist. 1996;51(2):77-101. doi: 10.1037/0003-066X.51.2.77.
  7. Critiques of multiple intelligence theory.2010.
  8. Edwin LA. Why emotional intelligence is an invalid concept". Journal of Organizational Behavior. 2005;26(4):425-431. doi: 10.1002/job.318.
  9. Schmidt FL, Hunter J. General mental ability in the world of work: occupational attainment and job performance. J Pers Soc Psychol. 2004 Jan;86(1):162-73. doi: 10.1037/0022-3514.86.1.162. PMID: 14717634.
  10. Jerome BS. State of the child. The New York Review of Books; 2018.
  11. Robert JS. Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press; 1985.
  12. Sternberg RJ. The theory of successful intelligence. 1978.
  13. Brody N. Construct validation of the Sternberg Triarchic abilities test: Comment and reanalysis. Intelligence. 2003;31(4):319-329. doi: 10.1016/S0160-2896(01)00087-3
  14. Luria AR. Higher cortical functions in man. New York: Basic Books; 1966.
  15. Das JP, Naglieri JA, Kirby JR. Assessment of cognitive processes. Needham Heights, Mass: Allyn & Bacon; 1994.
  16. Luria AR. The working brain: An introduction to neuropsychology. New York; 1973.
  17. Das JP. A Better look at Intelligence. Current Directions in Psychological Science. 2002;11(1):28-3.
  18. Piaget J. Psychology of intelligence. Routledge. 2001.
  19. Studies in cognitive development: Essays in honor of Jean Piaget. Elkind D, Flavell J, editors. New York: Oxford University Press; 1969.
  20. Piaget J. The origin of intelligence in the child. New Fetter Lane, New York: Routledge & Kegan Paul. 1953.
  21. Kitchener RF. Piaget's epistemic subject and science education: Epistemologicalvs. Psychological issues. Science and Education. 1993;2(2):137-148.
  22. Demetriou A. Cognitive development. In: Demetriou A, Doise W, van Lieshout KFM, editors. Life-span developmental psychology. London: Wiley; 1998. p.179-269.
  23. Jung RE, Haier RJ. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87. doi: 10.1017/S0140525X07001185. Epub 2007 Jul 26. PMID: 17655784.
  24. Colom R, Haier RJ, Head K, Alvarez-Linera J, Ouiroga MA, Shih PC, Jung RE. Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the PFIT model. Intelligence. 2009;37(2):124-135. doi: 10.1016/j.intell.2008.07.007.
  25. Deary IJ, Penke L, Johnson W. The neuroscience of human intelligence differences. Nat Rev Neurosci. 2010 Mar;11(3):201-11. doi: 10.1038/nrn2793. Epub 2010 Feb 10. PMID: 20145623.
  26. Horn JL, Cattell RB. Refinement and test of the theory of fluid and crystallized general intelligences. J Educ Psychol. 1966 Oct;57(5):253-70. doi: 10.1037/h0023816. PMID: 5918295.
  27. Cattell RB. Intelligence: Its structure, growth and action. New York: North-Holland;1987.
  28. Kvist AV, Gustafsson JE. The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell's investment theory. Intelligence. 2008;36(5):422-436. doi: 10.1016/j.intell.2007.08.004.
  29. Cattell RB. Abilities: Their structure, growth, and action. Boston: Houghton Mifflin; 1971.
  30. Hebb DO. Intelligence in man after large removals of cerebral tissue: Report of four frontal lobe cases. 1939. doi: 10.1080/00221309.1939.9710.
  31. Wood P, Englert P. Intelligence compensation theory: A critical examination of the negative relationship between conscientiousness and fluid and crystallised intelligence. The Australian and New Zealand Journal of Organisational Psychology. 2009;2:19-29. doi: 10.1375/ajop.2.1.19.
  32. Chamorro-Premuzic T, Furnham A. A possible model for understanding the personality--intelligence interface. Br J Psychol. 2004 May;95(Pt 2):249-64. doi: 10.1348/000712604773952458. PMID: 15142305.
  33. Moutafi J, Furnham A, Paltiel L. Why is conscientiousness negatively correlated with intelligence?. Personality and Individual Differences. 2004;37(5):1013-1022. doi: 10.1016/j.paid.2003.11.010.
  34. Brody N. Intelligence. 2nd ed. New York: Academic Press; 1992.
  35. Murray AL, Johnson W, McGue M, Iacono WG. How are conscientiousness and cognitive ability related to one another? A re-examination of the intelligence compensation hypothesis. Personality and Individual Differences. 2014;70:17-22. doi: 10.1016/j.paid.2014.06.014.
  36. Wood R, Bandura A. Social cognitive theory of organizational management. Academy of Management Review. 1989;14(3):361-384. doi: 10.5465/AMR.1989.4279067.
  37. Bandura A. Perceived self-efficacy in cognitive development and functioning. Educational Psychologist. 1993;28(2):117-148. doi: 10.1207/s15326985ep2802_3.
  38. Ackerman PL. A theory of adult intellectual development: Process, personality, interests, and knowledge. Intelligence. 199622 (2):227-257. doi: 10.1016/S0160-2896(96)90016-1.
  39. Ackerman PL. Personality, intelligence, motivation, and interests: Implications for overlapping traits. Address presented at the annual meeting of the American Psychological Association. New York; 1995.
  40. Detterman DK, Andrist CG. Effect of instructions on elementary cognitive tasks sensitive to individual differences. Am J Psychol. 1990 Fall;103(3):367-401. PMID: 2221194.
  41. Signorella ML, Jamison W. Masculinity, femininity, androgyny and cognitive performance: A meta-analysis. Psychological Bulletin. 1986;100(2):207-238. doi: 10.1037/0033-2909.100.2.207.
  42. Rolfhus EL, Ackerman PL. Self-report knowledge: At the crossroads of ability,interest, and personality. Journal of Educational Psychology. 1996;88:174-188. doi: 10.1037/0022-0663.88.1.174.
  43. Neisser U, Boodoo G, Bouchard TJJ, Boykin AW, Brody N, Ceci SJ, Halpern DF, Loehlin JC, Perloff R, Sternberg RJ, Urbina S. Intelligence: Knowns and unknowns. American Psychologist. 1996;51(2):77-101. doi: 10.1037/0003-066X.51.2.77.
  44. Braaten EB, Norman D. Intelligence (IQ) testing. Pediatr Rev. 2006 Nov;27(11):403-8. PMID: 17079505.
  45. Stern. 1914. p.70-84.
  46. Intelligence Quotient (IQ). Glossary of important assessment and measurement terms. 2017.
  47. Gottfredson. High-IQ societies. 2009. p.31-32.
  48. Ulrich N. Rising scores on intelligence tests. 1997.
  49. Hunt. As mental testing expanded to the evaluation of adolescents and adults, however, there was a need for a measure of intelligence that did not depend upon mental age. 2011;5.
  50. Richard H. The neuroscience of intelligence. Cambridge University Press; 2016. p.18-19.
  51. Cusick SE, Georgieff MK. The Role of Nutrition in Brain Development: The Golden Opportunity of the "First 1000 Days". J Pediatr. 2016 Aug;175:16-21. doi: 10.1016/j.jpeds.2016.05.013. Epub 2016 Jun 3. PMID: 27266965; PMCID: PMC4981537.
  52. Saloojee H, Pettifor JM. Iron deficiency and impaired child development. BMJ. 2001 Dec 15;323(7326):1377-8. doi: 10.1136/bmj.323.7326.1377. PMID: 11744547; PMCID: PMC1121846.
  53. Qian M, Wang D, Watkins WE, Gebski V, Yan YQ, Li M, Chen ZP. The effects of iodine on intelligence in children: a meta-analysis of studies conducted in China. Asia Pac J Clin Nutr. 2005;14(1):32-42. PMID: 15734706.
  54. Poh BK, Lee ST, Yeo GS, Tang KC, Noor Afifah AR, Siti Hanisa A, Parikh P, Wong JE, Ng ALO; SEANUTS Study Group. Low socioeconomic status and severe obesity are linked to poor cognitive performance in Malaysian children. BMC Public Health. 2019 Jun 13;19(Suppl 4):541. doi: 10.1186/s12889-019-6856-4. PMID: 31196019; PMCID: PMC6565598.
  55. Galván M, Uauy R, Corvalán C, López-Rodríguez G, Kain J. Determinants of cognitive development of low SES children in Chile: a post-transitional country with rising childhood obesity rates. Matern Child Health J. 2013 Sep;17(7):1243-51. doi: 10.1007/s10995-012-1121-9. PMID: 22915146.
  56. Jokela M, Batty GB, DearyIJ, GaleCR, Kivimäki M. Low childhood IQ and early adult mortality: The role of explanatory factors in the 1958 british birth cohort. Pediatrics. 2009;124(3):e380-e388. doi: 10.1542/peds.2009-0334.
  57. Deary & Batty. 2007.
  58. Neisser, et al. 1995.
  59. Ronfani L, Vecchi Brumatti L, Mariuz M, Tognin V, Bin M, Ferluga V, Knowles A, Montico M, Barbone F. The Complex Interaction between Home Environment, Socioeconomic Status, Maternal IQ and Early Child Neurocognitive Development: A Multivariate Analysis of Data Collected in a Newborn Cohort Study. PLoS One. 2015 May 21;10(5):e0127052. doi: 10.1371/journal.pone.0127052. PMID: 25996934; PMCID: PMC4440732.
  60. Johnson W, Turkheimer E, Gottesman II, Bouchard TJ Jr. Beyond Heritability: Twin Studies in Behavioral Research. Curr Dir Psychol Sci. 2010 Aug 1;18(4):217-220. doi: 10.1111/j.1467-8721.2009.01639.x. PMID: 20625474; PMCID: PMC2899491.
  61. Turkheimer. 2008.
  62. Devlin B, Daniels M, Roeder K. The heritability of IQ. Nature. 1997 Jul 31;388(6641):468-71. doi: 10.1038/41319. PMID: 9242404.
  63. Frank LS, John EH. The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research Findings. 1998;124(2):262-274. doi: 10.1037/0033-2909.124.2.262.
  64. Tarmo T. Intelligence and socioeconomic success: A metaanalytic review of longitudinal research. Intelligence. 2007;35(5):401-426. doi: 10.1016/j.intell.2006.09.004.
  65. Table 2.1 major examples of current intelligence tests. Urbina. 2011.
  66. Discussing Wechsler, stanford-binet, Kaufman, Woodcock-Johnson, DAS, CAS, and RIAS tests. Flanagan & Harrison; 2012. p.8-13.
  67. Kevin CS, Deniz SO. Taxonomies and compendia of cognitive ability and personality constructs and measures relevant to industrial, work and organizational psychology. The SAGE handbook of industrial, work and organizational psychology: Personnel Psychology and Employee Performance, 1 Oliver's Yard, 55 City Road London EC1Y 1SP: SAGE Publications Ltd. 2018;366-407. doi: 10.4135/9781473914940.n14.
  68. Primary mental abilities test: Psychological test. Encyclopædia Britannica. 2015.
  69. Defining and measuring psychological attributes. 2015.
  70. Sherry KB, Kathryn EJ. Test review: Review of Kaufman brief intelligence test, second edition. In: Kaufman AS, Kaufman NL, editors. Kaufman brief intelligence test, second edition. Bloomington, MN: Pearson, Inc. Journal of Psychoeducational Assessment. 2010;28(2):167-174. doi: 10.1177/0734282909348217.
  71. Henry MO. Psychology: An introduction. Lexington, MA: Heath. 1973;363.
  72. Steve T. The WISC-III companion: A Guide to Interpretation and Educational Intervention. Austin, TX: Pro-Ed. 1993;35.
  73. David JB. Measuring Intelligence: Facts and fallacies. Cambridge: Cambridge University Press; 2004. p.50.
  74. Mackintosh. In the jargon of psychological measurement theory, IQ is an ordinal scale, where we are simply rank-ordering people. ... It is not even appropriate to claim that the 10-point difference between IQ scores of 110 and 100 is the same as the 10-point difference between IQs of 160 and 150. 1998;30-31.
  75. Stevens SS. On the theory of scales of measurement. Science. 1946;103(2684):677-680.
  76. Gottfredson. 2009;31-32.
  77. Neisser et al. 1995.
  78. Mackintosh. After the age of 8-10, IQ scores remain relatively stable: the correlation between IQ scores from age 8 to 18 and IQ at age 40 is over 0.70. 2011;169.
  79. Weiten W. Psychology: Themes and Variations. 2016.
  80. WISC-V interpretive report sample. 2020.
  81. Alan KS, Engi RS, Diane LC. Intelligent testing with the WISC-V. Hoboken, NJ: Wiley; 2016. p.683-702.
  82. Simon W. Error in the estimation of intellectual ability in the low range using the WISC-IV and WAIS-III". Personality and Individual Differences. 2010;48(5):517-521. doi: 10.1016/j.paid.2009.11.017.
  83. The concerns associated with SEMs [Standard Errors of Measurement] are actually substantially worse for scores at the extremes of the distribution, especially when scores approach the maximum possible on a test. Lohman & Foley Nicpon. 1980.
  84. Urbina 2011, p. 20 "[Curve-fitting] is just one of the reasons to be suspicious of reported IQ scores much higher than 160"
  85. Weiten W. Psychology: Themes and variations. Cengage Learning; 2016. p.281.
  86. Gould 1981, p. 24. Gould 1996, p. 56
  87. Kaplan JM, Pigliucci M, Banta JA. Gould on Morton, Redux: What can the debate reveal about the limits of data? Stud Hist Philos Biol Biomed Sci. 2015 Aug;52:22-31. doi: 10.1016/j.shpsc.2015.01.001. Epub 2015 Feb 7. PMID: 25666493.
  88. Michael W, Diane BP. Morton, Gould, and bias: A comment on the mismeasure of science. PLOS Biology. 2016;14(4):e1002444. doi: 10.1371/journal.pbio.1002444.
  89. 25 Greatest science books of all time. Discover. 2006.
  90. Kaufman. 2009.
  91. Brooks, David. The waning of I.Q. The New York Times; 2007.
  92. Sternberg, Robert J, Richard K. Wagner. "The g-ocentric view of intelligence and job performance is wrong." Current directions in psychological science. 1993:1-5.
  93. Anastasi & Urbina. 1997;326-327.
  94. Zadeh LA. Fuzzy sets. Information and control. 1965;8:338-353. doi: 10.1016/S0019-9958(65)90241-X.
  95. Zadeh LA. A fuzzy set theoretic interpretation of linguistic hedges. Journal of Cybernetics. 1972;2:4-34. doi: 10.1080/01969727208542910.
  96. Zadeh LA. Outline of a new approach to the analysis of complex systems and decision processes. In: IEEE Trans. SMC3; 1973. p.28-44
  97. Zadeh LA. The concept of linguistic variable and its application to approximate reasoning-I, Information science. 1975;8:199-249. doi: 10.1016/S0165-0114(99)80004-9.
  98. Zadeh LA. Fuzzy sets as a basis for the theory of possibility, Fuzzy sets and Systems. 1978;1:3-28. doi: 10.1016/S0165-0114(99)80004-9.
  99. Zadeh LA. A computational approach to fuzzy quantifiers in natural language. Comput Math Appl. 1983;9:149-184. doi: 10.1016/0898-1221(83)90013-5.
  100. Zimmermann HJ. Fuzzy set theory and its application, Kluwer Nijhoff Publishing, Dordrecht. 1985.
  101. Zhang, Xiaohui, Duckstein L. Combination of radiologists diagnosis by fuzzy number approach, Proceedings IEEE-FUZZ 93, San Francisco IEEE-Neural Networks Council. 1993. p.1293-1298.
  102. Bardossy A, Duckstein L. Fuzzy rule-based modelling with applications to geophysical, biological and engineering systems. CRC press; 1995.
  103. Dubois D, Prade H. Possibility theory: An approach to computerized processing of uncertainty. New York Plenum press; 1988. p.268.


Comments


Publish with JBRES — Peer-reviewed, multidisciplinary Open Access with rapid review, DOI, and global visibility.
Double-Blind CrossRef DOI Discoverable