Covid-19 Research

Clinical Trials

OCLC Number/Unique Identifier:

Whartons Jelly in Regenerative Joint Therapy: A Case for IND-Exempt Inclusion in Randomized Controlled Trials

Medicine Group    Start Submission

Scott M Martin*

Volume6-Issue8
Dates: Received: 2025-08-11 | Accepted: 2025-08-26 | Published: 2025-08-27
Pages: 1123-1129

Abstract

Platelet-Rich Plasma (PRP) and Wharton’s Jelly (WJ) remain two of the most widely explored biologic injectables for the treatment of degenerative joint disease. To date, only PRP is permitted in Randomized Controlled Trials (RCTs) without FDA oversight under an Investigational New Drug (IND) application. This regulatory disparity persists despite the fact that WJ, particularly in its acellular or lyophilized form, shares critical biological, biochemical, and biomechanical functions with PRP-including anti-inflammatory, viscoelastic, and Extracellular Matrix (ECM) remodelling properties.

This article re-examines the native role of WJ during fatal development-where it withstands physiologic strain, undergoes active remodelling, and supports vascular integrity-as the appropriate frame through which to assess its clinical utility in adult joint degeneration. When used intra-particularly, WJ performs the same basic structural and reparative functions required of cartilage matrix support, making its exclusion from homologous use designation a contradiction under the FDA’s own regulatory logic.

We argue that WJ, when minimally manipulated and applied for the structural repair of degenerated joints, qualifies as a homologous-use allograft under 21 CFR 1271.3(c). As such, it should be exempt from IND requirements in the context of randomized, controlled, or comparative clinical trials. Enabling such studies is not only scientifically and ethically justified-it is essential to fulfil medicine’s obligation to pursue truth through evidence. RCTs are the cornerstone of clinical validation, and they must be equally accessible for all biologic candidates with plausible mechanistic parity. At stake is not just regulatory fairness, but the future of non-operative care for millions of Americans suffering from joint degeneration.

FullText HTML FullText PDF DOI: 10.37871/jbres2169


Certificate of Publication




Copyright

© 2025 Martin SM. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Martin SM. Wharton’s Jelly in Regenerative Joint Therapy: A Case for IND-Exempt Inclusion in Randomized Controlled Trials. J Biomed Res Environ Sci. 2025 Aug 27; 6(8): 1123-1129. doi: 10.37871/jbres2169, Article ID: JBRES2169, Available at: https://www.jelsciences.com/articles/jbres2169.pdf


Subject area(s)

References


  1. Hariton E, Locascio JJ. Randomised controlled trials - the gold standard for effectiveness research: Study design: randomised controlled trials. BJOG. 2018 Dec;125(13):1716. doi: 10.1111/1471-0528.15199. Epub 2018 Jun 19. PMID: 29916205; PMCID: PMC6235704.
  2. Fitzpatrick J, Bulsara M, Zheng MH. The Effectiveness of Platelet-Rich Plasma in the Treatment of Tendinopathy: A Meta-analysis of Randomized Controlled Clinical Trials. Am J Sports Med. 2017 Jan;45(1):226-233. doi: 10.1177/0363546516643716. Epub 2016 Jul 21. PMID: 27268111.
  3. Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.
  4. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: Minimal manipulation and homologous use [guidance for industry and FDA staff]. U.S. Food and Drug Administration. 2020.
  5. Mayoly A, Iniesta A, Curvale C, Kachouh N, Jaloux C, Eraud J, Vogtensperger M, Veran J, Grimaud F, Jouve E, Casanova D, Sabatier F, Legré R, Magalon J. Development of Autologous Platelet-Rich Plasma Mixed-Microfat as an Advanced Therapy Medicinal Product for Intra-Articular Injection of Radio-Carpal Osteoarthritis: From Validation Data to Preliminary Clinical Results. Int J Mol Sci. 2019 Mar 5;20(5):1111. doi: 10.3390/ijms20051111. PMID: 30841510; PMCID: PMC6429478.
  6. Roy A, Mantay M, Brannan C, Griffiths S. Placental Tissues as Biomaterials in Regenerative Medicine. Biomed Res Int. 2022 Apr 21;2022:6751456. doi: 10.1155/2022/6751456. PMID: 35496035; PMCID: PMC9050314.
  7. Erlich A, Pearce P, Mayo RP, Jensen OE, Chernyavsky IL. Physical and geometric determinants of transport in fetoplacental microvascular networks. Sci Adv. 2019 Apr 17;5(4):eaav6326. doi: 10.1126/sciadv.aav6326. PMID: 31001587; PMCID: PMC6469945.
  8. Gupta A, El-Amin SF 3rd, Levy HJ, Sze-Tu R, Ibim SE, Maffulli N. Umbilical cord-derived Wharton's jelly for regenerative medicine applications. J Orthop Surg Res. 2020 Feb 13;15(1):49. doi: 10.1186/s13018-020-1553-7. PMID: 32054483; PMCID: PMC7017504.
  9. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011 Oct;469(10):2706-15. doi: 10.1007/s11999-011-1857-3. PMID: 21403984; PMCID: PMC3171543.
  10. Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel). 2023 Apr 5;8(2):146. doi: 10.3390/biomimetics8020146. PMID: 37092398; PMCID: PMC10123695.
  11. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014 Nov;15(11):1009-16. doi: 10.1038/ni.3002. PMID: 25329189.
  12. Doucet M, Ernou I, Zhang Y, Llense JR, Begot L, Holy X, Bensidhoum M. Platelet lysate prevents apoptosis, supports proliferation, and maintains the differentiation potential of human mesenchymal stem cells. Tissue Engineering. 2005;11(7-8):962-973. doi: 10.1089/ten.2005.11.962.
  13. Saw SN, Dai Y, Yap CH. A review of biomechanics analysis of the umbilical–placenta system with regards to diseases. Frontiers in Physiology. 2021;12:587635. doi: 10.3389/fphys.2021.587635.
  14. Pennati G, Laganà K, Gervaso F, Rigano S, Ferrazzi E. How Do Cord Compressions Affect the Umbilical Venous Flow Resistance? An In Vitro Investigation of the Biomechanical Mechanisms. Cardiovasc Eng Technol. 2013 Sep;4(3):267-275. doi: 10.1007/s13239-013-0131-0. Epub 2013 Feb 12. PMID: 29637502.
  15. Basalo IM, Mauck RL, Kelly TA, Nicoll SB, Chen FH, Hung CT, Ateshian GA. Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion. J Biomech Eng. 2004 Dec;126(6):779-86. doi: 10.1115/1.1824123. PMID: 15796336; PMCID: PMC3726345.
  16. Gupta A, El-Amin SF, Levy HJ, Sze-Tu R, Ibim SE, Maffulli N. Umbilical cord-derived Wharton's jelly for regenerative medicine applications. Journal of Orthopaedic Surgery and Research. 2020;15(1):49. doi: 10.1186/s13018-020-1553-7.
  17. Eyre D. Articular cartilage and changes in Arthritis: Collagen of articular cartilage. Arthritis Res Ther. 2001;4(30):2001. doi: 10.1186/ar380.
  18. Choi UY, Joshi HP, Payne S, Kim KT, Kyung JW, Choi H, Cooke MJ, Kwon SY, Roh EJ, Sohn S, Shoichet MS, Han I. An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. Int J Mol Sci. 2020 Oct 7;21(19):7391. doi: 10.3390/ijms21197391. PMID: 33036383; PMCID: PMC7582266.
  19. Sobolewski K, Małkowski A, Bańkowski E, Jaworski S. Wharton's jelly as a reservoir of peptide growth factors. Placenta. 2005 Nov;26(10):747-52. doi: 10.1016/j.placenta.2004.10.008. Epub 2004 Dec 15. PMID: 16226124.
  20. Kalaszczynska I, Ferdyn K. Wharton's jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int. 2015;2015:430847. doi: 10.1155/2015/430847. Epub 2015 Mar 15. PMID: 25861624; PMCID: PMC4377382.
  21. Barczewska M, Grudniak M, Maksymowicz S, Siwek T, Ołdak T, Jezierska-Woźniak K, Gładysz D, Maksymowicz W. Safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy. Neural Regen Res. 2019 Feb;14(2):313-318. doi: 10.4103/1673-5374.243723. PMID: 30531015; PMCID: PMC6301165.
  22. Basiri A, Farokhi M, Azami M, Ebrahimi-Barough S, Mohamadnia A, Rashtbar M, Hasanzadeh E, Mahmoodi N, Baghaban Eslaminejad M, Ai J. A silk fibroin/decellularized extract of Wharton's jelly hydrogel intended for cartilage tissue engineering. Prog Biomater. 2019 Mar;8(1):31-42. doi: 10.1007/s40204-019-0108-7. Epub 2019 Jan 31. PMID: 30706299; PMCID: PMC6424998.
  23. Gao F, Su S, Qi J, Li Z, Wang C, Zhong D. Decellularized cartilage scaffolds derived from wharton's jelly facilitate cartilage regeneration and inhibit angiogenesis. Mater Today Bio. 2025 Jun 25;33:102023. doi: 10.1016/j.mtbio.2025.102023. PMID: 40677409; PMCID: PMC12268936.
  24. Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods. 2022 Dec;28(12):646-655. doi: 10.1089/ten.TEC.2022.0135. PMID: 36326204; PMCID: PMC9807253.
  25. Cazarin J, Dupuy C, Pires de Carvalho D. Redox Homeostasis in Thyroid Cancer: Implications in Na+/I- Symporter (NIS) Regulation. Int J Mol Sci. 2022 May 30;23(11):6129. doi: 10.3390/ijms23116129. PMID: 35682803; PMCID: PMC9181215.
  26. Gupta A, Maffulli N, Rodriguez HC, Lee CE, Levy HJ, El-Amin SF 3rd. Umbilical cord-derived Wharton's jelly for treatment of knee osteoarthritis: study protocol for a non-randomized, open-label, multi-center trial. J Orthop Surg Res. 2021 Feb 18;16(1):143. doi: 10.1186/s13018-021-02300-0. PMID: 33602286; PMCID: PMC7890617.
  27. Gupta A, Rodriguez HC, Potty AG, Levy HJ, El-Amin Iii SF. Treatment of Knee Osteoarthritis with Intraarticular Umbilical Cord-Derived Wharton's Jelly: A Case Report. Pharmaceuticals (Basel). 2021 Aug 31;14(9):883. doi: 10.3390/ph14090883. PMID: 34577583; PMCID: PMC8472740.
  28. Kabatas S, Civelek E, Sezen GB, Kaplan N, Savrunlu EC, Cetin E, Diren F, Karaoz E. Functional Recovery After Wharton's Jelly-Derived Mesenchymal Stem Cell Administration in a Patient with Traumatic Brain Injury: A Pilot Study. Turk Neurosurg. 2020;30(6):914-922. doi: 10.5137/1019-5149.JTN.31732-20.1. PMID: 33216342.
  29. Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio. 2024 Sep 27;29:101280. doi: 10.1016/j.mtbio.2024.101280. PMID: 39399243; PMCID: PMC11470555.
  30. Fallon EA, Boring MA, Foster AL, Stowe EW, Lites TD, Odom EL, Seth P. Prevalence of Diagnosed Arthritis - United States, 2019-2021. MMWR Morb Mortal Wkly Rep. 2023 Oct 13;72(41):1101-1107. doi: 10.15585/mmwr.mm7241a1. PMID: 37824422; PMCID: PMC10578950.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search