Covid-19 Research

Original Article

OCLC Number/Unique Identifier:

Re-evaluating Intra-Islet Paracrine Signaling: Precision, Pulsatility and the Path toward Mechanistic Clarity

Medicine Group    Start Submission

Alejandro Tamayo-Garcia, Dayleen Hakim-Rodriguez and Rayner Rodriguez-Diaz*

Volume6-Issue6
Dates: Received: 2025-06-06 | Accepted: 2025-06-17 | Published: 2025-06-20
Pages: 769-774

Abstract

The pancreas regulates glucose homeostasis through the rhythmic secretion of insulin and glucagon into the portal circulation-an essential process that is disrupted early in the pathogenesis of type 2 diabetes. While the metabolic relevance of this pulsatile hormone release is well recognized, the underlying regulatory mechanisms remain incompletely understood. This review highlights emerging insights that redefine pancreatic islets not merely as hormone-producing cell clusters, but as integrated oscillatory networks, capable of coordinating hormone output via tightly controlled intra-islet paracrine signaling.

We emphasize the critical role of cell-to-cell communication-including interactions between endocrine and non-endocrine cells-in shaping the timing, amplitude, and composition of hormone pulses. Recent findings demonstrate that these intra-islet signals establish systemic glucose thresholds in both mice and humans, thresholds that delineate normoglycemia, prediabetes, and diabetes. Despite their clinical relevance, these mechanisms remain underexplored.

We discuss conceptual advances such as Post-Inhibitory Rebound (PIR) responses and propose that systemic hormone pulsatility emerges from coordinated activity across endocrine, neural, and vascular networks. Additionally, we address experimental limitations including receptor desensitization, ligand promiscuity, and artifacts introduced by islet isolation and static incubation assays, which lack the temporal resolution to capture dynamic paracrine interactions.

To advance this field, we advocate for the adoption of high-resolution perifusion systems and live-cell biosensor imaging. These technologies offer integrated spatial, temporal, and functional insights that are essential for uncovering the mechanisms governing hormone pulsatility and its dysregulation in diabetes.

FullText HTML FullText PDF DOI: 10.37871/jbres2129


Certificate of Publication




Copyright

© 2025 Tamayo-Garcia A, et al., Distributed under Creative Commons CC-BY 4.0

How to cite this article

Tamayo-Garcia A, Hakim-Rodriguez D, Rodriguez-Diaz R. Re-evaluating Intra-Islet Paracrine Signaling: Precision, Pulsatility and the Path toward Mechanistic Clarity. J Biomed Res Environ Sci. 2025 Jun 20; 6(6): 769-774. doi: 10.37871/ jbres2129, Article ID: JBRES2129, Available at: https://www.jelsciences.com/articles/jbres2129.pdf


Subject area(s)

References


  1. Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975 Jun;55(6):1278-83. doi: 10.1172/JCI108047. PMID: 1133173; PMCID: PMC301883.
  2. Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol. 2018 Jul 2;217(7):2273-2289. doi: 10.1083/jcb.201802095. Epub 2018 Apr 5. PMID: 29622564; PMCID: PMC6028526.
  3. Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes. 2005 Jun;54(6):1649-56. doi: 10.2337/diabetes.54.6.1649. PMID: 15919785.
  4. Matveyenko AV, Liuwantara D, Gurlo T, Kirakossian D, Dalla Man C, Cobelli C, White MF, Copps KD, Volpi E, Fujita S, Butler PC. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes. 2012 Sep;61(9):2269-79. doi: 10.2337/db11-1462. Epub 2012 Jun 11. PMID: 22688333; PMCID: PMC3425431.
  5. Matveyenko AV, Butler PC. Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab. 2008 Nov;10 Suppl 4(0 4):23-31. doi: 10.1111/j.1463-1326.2008.00939.x. PMID: 18834430; PMCID: PMC3375862.
  6. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988 May 12;318(19):1231-9. doi: 10.1056/NEJM198805123181903. PMID: 3283554.
  7. Rapp PE. Why are so many biological systems periodic? Prog Neurobiol. 1987;29(3):261-73. doi: 10.1016/0301-0082(87)90023-2. PMID: 3299493.
  8. Kruse K, Jülicher F. Oscillations in cell biology. Curr Opin Cell Biol. 2005 Feb;17(1):20-6. doi: 10.1016/j.ceb.2004.12.007. PMID: 15661515.
  9. Grapengiesser E, Gylfe E, Hellman B. Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1299-304. doi: 10.1016/s0006-291x(88)80503-5. PMID: 3281672.
  10. Tamayo A, Gonçalves LM, Rodriguez-Diaz R, Pereira E, Canales M, Caicedo A, Almaça J. Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Glucose Homeostasis in Mice. Diabetes. 2022 Aug 1;71(8):1679-1693. doi: 10.2337/db21-1104. PMID: 35587617; PMCID: PMC9490358.
  11. Pénicaud L. Autonomic nervous system and pancreatic islet blood flow. Biochimie. 2017 Dec;143:29-32. doi: 10.1016/j.biochi.2017.10.001. Epub 2017 Oct 7. PMID: 29017926.
  12. Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab. 2014 Sep;16 Suppl 1:87-95. doi: 10.1111/dom.12346. PMID: 25200301.
  13. Benninger RKP, Hodson DJ. Intercellular communication and heterogeneity in pancreatic islet function. Nature Reviews Endocrinology. 2018;14(6):349-358.
  14. Bertram R, Sherman A, Satin LS. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol. 2010;654:261-79. doi: 10.1007/978-90-481-3271-3_12. PMID: 20217502; PMCID: PMC3120131.
  15. Stetter O. Model-based inference of islet network dynamics reveals complex phase relationships and phase-resetting behavior. PLoS Computational Biology. 2016;12(8):e1005116.
  16. Hoang DT, Hara M, Jo J. Design Principles of Pancreatic Islets: Glucose-Dependent Coordination of Hormone Pulses. PLoS One. 2016 Apr 1;11(4):e0152446. doi: 10.1371/journal.pone.0152446. PMID: 27035570; PMCID: PMC4818077.
  17. Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci. 2024 Apr 6;25(7):4070. doi: 10.3390/ijms25074070. PMID: 38612880; PMCID: PMC11012451.
  18. Rorsman P, Huising MO. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol. 2018 Jul;14(7):404-414. doi: 10.1038/s41574-018-0020-6. PMID: 29773871; PMCID: PMC5997567.
  19. Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nature Metabolism. 2019;1:1189-1201.
  20. Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl). 2020 Apr;98(4):451-467. doi: 10.1007/s00109-020-01887-x. Epub 2020 Feb 17. Erratum in: J Mol Med (Berl). 2020 Apr;98(4):469. doi: 10.1007/s00109-020-01913-y. PMID: 32067063; PMCID: PMC7899133.
  21. Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab. 2024 Jan;6(1):61-77. doi: 10.1038/s42255-023-00944-2. Epub 2024 Jan 9. PMID: 38195859; PMCID: PMC10919447.
  22. Rodriguez-Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, Leibiger IB, Kenyon NS, Ricordi C, Pileggi A, Caicedo A, Berggren PO. Paracrine Interactions within the Pancreatic Islet Determine the Glycemic Set Point. Cell Metab. 2018 Mar 6;27(3):549-558.e4. doi: 10.1016/j.cmet.2018.01.015. PMID: 29514065; PMCID: PMC5872154.
  23. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999 Sep;104(6):787-94. doi: 10.1172/JCI7231. PMID: 10491414; PMCID: PMC408438.
  24. Ríos LI, Martínez M. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes Care. 2003;26(10):2864-2869.
  25. Brown A, Tzanakakis ES. Mathematical modeling clarifies the paracrine roles of insulin and glucagon on the glucose-stimulated hormonal secretion of pancreatic alpha- and beta-cells. Front Endocrinol (Lausanne). 2023 Aug 14;14:1212749. doi: 10.3389/fendo.2023.1212749. PMID: 37645413; PMCID: PMC10461634.
  26. Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab. 2022 May 1;322(5):E446-E463. doi: 10.1152/ajpendo.00411.2021. Epub 2022 Apr 4. PMID: 35373587.
  27. van der Meulen T, Donaldson CJ, Cáceres E, Hunter AE, Cowing-Zitron C, Pound LD, Adams MW, Zembrzycki A, Grove KL, Huising MO. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med. 2015 Jul;21(7):769-76. doi: 10.1038/nm.3872. Epub 2015 Jun 15. PMID: 26076035; PMCID: PMC4496282.
  28. DiGruccio MR, Mawla AM, Donaldson CJ, Noguchi GM, Vaughan J, Cowing-Zitron C, van der Meulen T, Huising MO. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metab. 2016 May 3;5(7):449-458. doi: 10.1016/j.molmet.2016.04.007. PMID: 27408771; PMCID: PMC4921781.
  29. Jenstad M, Chaudhry FA. The Amino Acid Transporters of the Glutamate/GABA-Glutamine Cycle and Their Impact on Insulin and Glucagon Secretion. Front Endocrinol (Lausanne). 2013 Dec 31;4:199. doi: 10.3389/fendo.2013.00199. PMID: 24427154; PMCID: PMC3876026.
  30. Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A, Shimizu T, Mita T, Kanazawa A, Imaizumi MO, Abe T, Kiyonari H, Hojyo S, Fukada T, Kawauchi T, Nagamatsu S, Hirano T, Kawamori R, Watada H. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest. 2013 Oct;123(10):4513-24. doi: 10.1172/JCI68807. Epub 2013 Sep 24. PMID: 24051378; PMCID: PMC3784536.
  31. Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab. 2019 Nov;1(11):1110-1126. doi: 10.1038/s42255-019-0135-7. Epub 2019 Nov 15. PMID: 32432213; PMCID: PMC7236889.
  32. Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, Berggren PO, Caicedo A. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells. Cell Rep. 2016 Dec 20;17(12):3281-3291. doi: 10.1016/j.celrep.2016.11.072. PMID: 28009296; PMCID: PMC5217294.
  33. Jacques-Silva MC, Correa-Medina M, Cabrera O, Rodriguez-Diaz R, Makeeva N, Fachado A, Diez J, Berman DM, Kenyon NS, Ricordi C, Pileggi A, Molano RD, Berggren PO, Caicedo A. ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6465-70. doi: 10.1073/pnas.0908935107. Epub 2010 Mar 22. PMID: 20308565; PMCID: PMC2851966.
  34. Rodriguez-Diaz R, Menegaz D, Caicedo A. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet. J Physiol. 2014 Aug 15;592(16):3413-7. doi: 10.1113/jphysiol.2013.269910. Epub 2014 Mar 3. PMID: 24591573; PMCID: PMC4229339.
  35. Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J Diabetes Investig. 2013 Nov 27;4(6):511-6. doi: 10.1111/jdi.12094. Epub 2013 May 15. PMID: 24843702; PMCID: PMC4020243.
  36. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology. 2000 Jan;141(1):111-7. doi: 10.1210/endo.141.1.7263. PMID: 10614629.
  37. Gylfe E. Glucose control of glucagon secretion: there is more to it than KATP channels. Diabetes. 2013 May;62(5):1391-3. doi: 10.2337/db13-0193. PMID: 23613562; PMCID: PMC3636606.
  38. Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ, Holst JJ. Insulin Secretion Depends on Intra-islet Glucagon Signaling. Cell Rep. 2018 Oct 30;25(5):1127-1134.e2. doi: 10.1016/j.celrep.2018.10.018. PMID: 30380405.
  39. von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science. 1993 Jul 16;261(5119):361-4. doi: 10.1126/science.8392750. PMID: 8392750.
  40. DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature. 1986 Dec 4-10;324(6096):470-3. doi: 10.1038/324470a0. PMID: 2431323.
  41. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991 May 9;351(6322):145-7. doi: 10.1038/351145a0. PMID: 1709448.
  42. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262(5134):679-85. doi: 10.1126/science.8235588. PMID: 8235588.
  43. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005 Sep;8(9):1263-8. doi: 10.1038/nn1525. Epub 2005 Aug 14. PMID: 16116447.
  44. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K. The microbial opsin family of optogenetic tools. Cell. 2011 Dec 23;147(7):1446-57. doi: 10.1016/j.cell.2011.12.004. PMID: 22196724; PMCID: PMC4166436.
  45. Roth BL. DREADDs for Neuroscientists. Neuron. 2016 Feb 17;89(4):683-94. doi: 10.1016/j.neuron.2016.01.040. PMID: 26889809; PMCID: PMC4759656.
  46. Farrell MS, Roth BL. Chemogenetics: Pharmacological tools for controlling the activity of targeted neural circuits. Trends in Pharmacological Sciences. 2013;34(7):399-407.
  47. Pipeleers DG, et al. (1994). Pipeleers D, in't Veld PI, Maes E, Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7322-5. doi: 10.1073/pnas.79.23.7322. PMID: 6760195; PMCID: PMC347331.
  48. Sweet IR, Cook DL, Wiseman RW, Greenbaum CJ, Lernmark A, Matsumoto S, Teague JC, Krohn KA. Dynamic perifusion to maintain and assess isolated pancreatic islets. Diabetes Technol Ther. 2002;4(1):67-76. doi: 10.1089/15209150252924111. PMID: 12017423.
  49. Sweet IR, Cook DL, Wiseman RW, Greenbaum CJ, Lernmark A, Matsumoto S, Teague JC, Krohn KA. Dynamic perifusion to maintain and assess isolated pancreatic islets. Diabetes Technol Ther. 2002;4(1):67-76. doi: 10.1089/15209150252924111. PMID: 12017423.
  50. Marciniak A, Cohrs CM, Tsata V, Chouinard JA, Selck C, Stertmann J, Reichelt S, Rose T, Ehehalt F, Weitz J, Solimena M, Slak Rupnik M, Speier S. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc. 2014 Dec;9(12):2809-22. doi: 10.1038/nprot.2014.195. Epub 2014 Nov 13. PMID: 25393778.
  51. Marciniak A, Cohrs CM, Tsata V, Chouinard JA, Selck C, Stertmann J, Reichelt S, Rose T, Ehehalt F, Weitz J, Solimena M, Slak Rupnik M, Speier S. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc. 2014 Dec;9(12):2809-22. doi: 10.1038/nprot.2014.195. Epub 2014 Nov 13. PMID: 25393778.
  52. Gilon P, Shepherd RM, Henquin JC. Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J Biol Chem. 1993 Oct 25;268(30):22265-8. PMID: 8226733.
  53. Dishinger JF, Reid KR, Kennedy RT. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem. 2009 Apr 15;81(8):3119-27. doi: 10.1021/ac900109t. PMID: 19364142; PMCID: PMC2679996.
  54. Bruce N. Microfluidic chip for continuous monitoring of hormone secretion. Analytical Chemistry. 2003;75(22):6426-6432.
  55. Regeenes R & Rocheleau JV. (2024). Twenty years of islet-on-a-chip. Lab on a Chip, 24(5):1327–1350.
  56. Adeoye DI, et al. (2024). Droplet-based fluorescence anisotropy insulin immunoassay. Analytical Methods, 157:1–8.
  57. Horowitz LF, et al. (2020). Microfluidics for interrogating live intact tissues. Microsystems& Nanoengineering, 6:16.
  58. Wu JP, et al. (2021). Microfluidic islet perifusion system. Frontiers in Bioengineering Biotechnology, 9:674431.
  59. Rodriguez-Diaz R, et al. (2012). Real-time detection of acetylcholine release from the human endocrine pancreas. Nature Protocols, 7(6):1015-1023.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search