Marilyn D Saulsbury, Simone O Heyliger, Emanuela Taioli, Tamiel N Turley, Jordan P Reynolds, John A Copland, Adam M Kase and R Renee Reams
Volume6-Issue6
Dates: Received: 2025-05-04 | Accepted: 2025-06-13 | Published: 2025-06-16
Pages: 666-682
Abstract
Background/Aim: clear cell Renal Cell Carcinoma (ccRCC), the most prevalent form of kidney cancer, often presents or recurs as an advanced, aggressive, and lethal disease. Thus, biomarkers are needed to identify patients at risk of developing advanced-stage or treatment-resistant ccRCC. SYNJ2BP, a cytoplasmic scaffolding protein, regulates ACVR2 activity, a key mediator of signaling pathways involved in tumor progression and metastasis. This study aimed to ascertain if SYNJ2BP, a gene highly expressed in normal kidney tissue, may serve as a predictive biomarker for ccRCC.
Materials and Methods: Bioinformatic analysis and immunohistochemistry were applied to investigate the relationship between SYNJ2BP expression, the immune landscape, and survival outcomes in ccRCC. We utilized data from publicly available databases, including The Cancer Genome Atlas, Gene Set Cancer Analysis (TCGA), and various other databases.
Results: In-silico analyses revealed that SYNJ2BP expression was significantly downregulated in ccRCC (Log2FC = 0.40, p = 2.65E-36; FDR = 9.73E-34), compared to normal tissue. Moreover, SYNJ2BP expression was significantly reduced in advanced stages and grades (III and IV; p < 0.001) compared to lower stages and grades (I and II). Decreased expression was associated with nodal invasion and metastasis (p < 0.0001), unresponsive to treatment (p=0.0052), post-treatment recurrence (p = 0.002), lower median overall survival (HR = 0.39, 95% CI: 0.28 to 0.54, p < 0.0001), disease-specific survival (HR = 0.16, 95% CI: 0.09 to 0.27, p < 0.0001) and shorter progression-free survival (HR = 0.24, 95% CI: 0.17 to 0.35, p < 0.0001). Survival trends remained consistent in multivariate Cox regression, where expression remained independently associated with outcome. Consistent with transcript-level findings, immunohistochemistry demonstrated reduced protein expression of SYNJ2BP in ccRCC patients (p < 0.05).
Conclusion: Our findings suggest that SYNJ2BP is a novel prognostic biomarker for ccRCC and that the downregulation of SYNJ2BP expression is associated with poor survival outcomes and reduced treatment response.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2121
Certificate of Publication

Copyright
© 2025 Saulsbury MD, et al., Distributed under Creative Commons CC-BY 4.0
How to cite this article
Saulsbury MD, Heyliger SO, Taioli E, Turley TN, Reynolds JP, Copland JA, Kase AM, Reams RR. Lower SYNJ2BP Gene Expression is Associated with Poor Survival Outcome and Treatment Response in Clear Cell Renal Cell Carcinoma: A Bioinformatics Analysis. J Biomed Res Environ Sci. 2025 Jun 16; 6(6): 666-682. doi: 10.37871/jbres2121, Article ID: JBRES2121, Available at: https://www.jelsciences.com/articles/jbres2121.pdf
Subject area(s)
References
- Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025 Jan-Feb;75(1):10-45. doi: 10.3322/caac.21871. Epub 2025 Jan 16. PMID: 39817679; PMCID: PMC11745215.
- Hamamoto S, Tasaki Y, Morikawa T, Naiki T, Etani T, Taguchi K, Iwatsuki S, Unno R, Takeda T, Nagai T, Kawase K, Mimura Y, Sugiyama Y, Okada A, Furukawa-Hibi Y, Yasui T. Efficacy and Safety of Immuno-Oncology Plus Tyrosine Kinase Inhibitors as Late-Line Combination Therapy for Patients with Advanced Renal Cell Carcinoma. J Clin Med. 2024 Jun 7;13(12):3365. doi: 10.3390/jcm13123365. PMID: 38929893; PMCID: PMC11204304.
- Ozay ZI, Jo Y, Galarza Fortuna G, Hage Chehade C, Gebrael G, Ostrowski M, Sayegh N, Anderson E, Jaime-Casas S, Zugman M, Mathew Thomas V, Maughan BL, Agarwal N, Pal SK, Swami U. Treatment and Attrition Trends for Metastatic Clear Cell Renal Cell Carcinoma in the US. JAMA Netw Open. 2025 Mar 3;8(3):e251201. doi: 10.1001/jamanetworkopen.2025.1201. PMID: 40111367; PMCID: PMC11926653.
- Cotta BH, Choueiri TK, Cieslik M, Ghatalia P, Mehra R, Morgan TM, Palapattu GS, Shuch B, Vaishampayan U, Van Allen E, Ari Hakimi A, Salami SS. Current Landscape of Genomic Biomarkers in Clear Cell Renal Cell Carcinoma. Eur Urol. 2023 Aug;84(2):166-175. doi: 10.1016/j.eururo.2023.04.003. Epub 2023 Apr 19. PMID: 37085424; PMCID: PMC11175840.
- Hartmann C, Schwietzer YA, Kummer D, Kirschnick N, Hoppe E, Thüring EM, Glaesner-Ebnet M, Brinkmann F, Gerke V, Reuter S, Nakayama M, Ebnet K. The mitochondrial outer membrane protein SYNJ2BP interacts with the cell adhesion molecule TMIGD1 and can recruit it to mitochondria. BMC Mol Cell Biol. 2020 Apr 17;21(1):30. doi: 10.1186/s12860-020-00274-1. PMID: 32303178; PMCID: PMC7164261.
- Rajala N, Gerhold JM, Martinsson P, Klymov A, Spelbrink JN. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res. 2014 Jan;42(2):952-67. doi: 10.1093/nar/gkt988. Epub 2013 Oct 25. PMID: 24163258; PMCID: PMC3902951.
- Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science. 2016 Jul 15;353(6296):aaf5549. doi: 10.1126/science.aaf5549. PMID: 27418514; PMCID: PMC5554545.
- Sasaki T, Sato Y, Higashiyama T, Sasaki N. Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Sci Rep. 2017 Sep 12;7(1):11257. doi: 10.1038/s41598-017-10843-8. PMID: 28900194; PMCID: PMC5595809.
- Ilamathi HS, Benhammouda S, Lounas A, Al-Naemi K, Desrochers-Goyette J, Lines MA, Richard FJ, Vogel J, Germain M. Contact sites between endoplasmic reticulum sheets and mitochondria regulate mitochondrial DNA replication and segregation. iScience. 2023 Jun 19;26(7):107180. doi: 10.1016/j.isci.2023.107180. PMID: 37534187; PMCID: PMC10391914.
- Nasonovs A, Garcia-Diaz M, Bogenhagen DF. A549 cells contain enlarged mitochondria with independently functional clustered mtDNA nucleoids. PLoS One. 2021 Mar 25;16(3):e0249047. doi: 10.1371/journal.pone.0249047. PMID: 33765066; PMCID: PMC7993880.
- Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci. 2020 Aug 5;21(16):5598. doi: 10.3390/ijms21165598. PMID: 32764295; PMCID: PMC7460667.
- Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood). 2016 Jun;241(12):1281-95. doi: 10.1177/1535370216641787. Epub 2016 Mar 27. PMID: 27022139; PMCID: PMC4950268.
- Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao Y, Kikuchi A, Tsuchida K, Sugino H. Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent pathway. J Biol Chem. 2002 May 24;277(21):19008-18. doi: 10.1074/jbc.M112472200. Epub 2002 Mar 6. PMID: 11882656.
- Massagué J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000 Dec;1(3):169-78. doi: 10.1038/35043051. PMID: 11252892.
- Ye Y, Zhang F, Chen Q, Huang Z, Li M. LncRNA MALAT1 modified progression of clear cell kidney carcinoma (KIRC) by regulation of miR-194-5p/ACVR2B signaling. Mol Carcinog. 2019 Feb;58(2):279-292. doi: 10.1002/mc.22926. Epub 2018 Oct 31. PMID: 30334578.
- Yuza K, Nagahashi M, Ichikawa H, Hanyu T, Nakajima M, Shimada Y, Ishikawa T, Sakata J, Takeuchi S, Okuda S, Matsuda Y, Abe M, Sakimura K, Takabe K, Wakai T. Activin a Receptor Type 2A Mutation Affects the Tumor Biology of Microsatellite Instability-High Gastric Cancer. J Gastrointest Surg. 2021 Sep;25(9):2231-2241. doi: 10.1007/s11605-020-04889-9. Epub 2021 Jan 8. PMID: 33420656; PMCID: PMC8728635.
- Du R, Wen L, Niu M, Zhao L, Guan X, Yang J, Zhang C, Liu H. Activin receptors in human cancer: Functions, mechanisms, and potential clinical applications. Biochem Pharmacol. 2024 Apr;222:116061. doi: 10.1016/j.bcp.2024.116061. Epub 2024 Feb 16. PMID: 38369212.
- Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, Guo AY. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform. 2023 Jan 19;24(1):bbac558. doi: 10.1093/bib/bbac558. PMID: 36549921.
- Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020 Jun;38(6):675-678. doi: 10.1038/s41587-020-0546-8. PMID: 32444850; PMCID: PMC7386072.
- von Roemeling CA, Radisky DC, Marlow LA, Cooper SJ, Grebe SK, Anastasiadis PZ, Tun HW, Copland JA. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res. 2014 Sep 1;74(17):4796-810. doi: 10.1158/0008-5472.CAN-14-0210. Epub 2014 Jun 24. PMID: 24962026; PMCID: PMC4154999.
- Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One. 2010 May 18;5(5):e10696. doi: 10.1371/journal.pone.0010696. PMID: 20502531; PMCID: PMC2872663.
- von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, Tan WW, Tun HW, Copland JA. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013 May 1;19(9):2368-80. doi: 10.1158/1078-0432.CCR-12-3249. Epub 2013 Apr 30. PMID: 23633458; PMCID: PMC3644999.
- Von Roemeling CA, Marlow LA, Radisky DC, Rohl A, Larsen HE, Wei J, Sasinowska H, Zhu H, Drake R, Sasinowski M, Tun HW, Copland JA. Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration. Oncotarget. 2014 Jul 30;5(14):5320-34. doi: 10.18632/oncotarget.2097. PMID: 24979721; PMCID: PMC4170622.
- Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018 Jan 4;46(D1):D956-D963. doi: 10.1093/nar/gkx1090. PMID: 29136207; PMCID: PMC5753188.
- Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7. doi: 10.1093/nar/gkw377. Epub 2016 May 3. PMID: 27141961; PMCID: PMC4987924.
- Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, Jeon M, Ma'ayan A. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021 Mar;1(3):e90. doi: 10.1002/cpz1.90. PMID: 33780170; PMCID: PMC8152575.
- Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. doi: 10.1093/nar/gku1003. Epub 2014 Oct 28. PMID: 25352553; PMCID: PMC4383874.
- Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001 Nov 1;125(1-2):279-84. doi: 10.1016/s0166-4328(01)00297-2. PMID: 11682119.
- Menyhart O, Weltz B, Győrffy B. MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction. PLoS One. 2021 Jun 9;16(6):e0245824. doi: 10.1371/journal.pone.0245824. Erratum in: PLoS One. 2022 Sep 9;17(9):e0274662. doi: 10.1371/journal.pone.0274662. PMID: 34106935; PMCID: PMC8189492.
- Carr HS, Chang JT, Frost JA. The PDZ Domain Protein SYNJ2BP Regulates GRK-Dependent Sst2A Phosphorylation and Downstream MAPK Signaling. Endocrinology. 2021 Feb 1;162(2):bqaa229. doi: 10.1210/endocr/bqaa229. PMID: 33313679; PMCID: PMC7799432.
- Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE, Pinder M, Gesierich S, Hammes HP, Augustin HG, Fischer A. Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res. 2013 Nov 8;113(11):1206-18. doi: 10.1161/CIRCRESAHA.113.301686. Epub 2013 Sep 11. PMID: 24025447.
- Liu X, Zhou J, Zhou N, Zhu J, Feng Y, Miao X. SYNJ2BP inhibits tumor growth and metastasis by activating DLL4 pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 2016 Jul 20;35(1):115. doi: 10.1186/s13046-016-0385-0. PMID: 27440153; PMCID: PMC4955141.
- Henn D, Abu-Halima M, Wermke D, Falkner F, Thomas B, Köpple C, Ludwig N, Schulte M, Brockmann MA, Kim YJ, Sacks JM, Kneser U, Keller A, Meese E, Schmidt VJ. MicroRNA-regulated pathways of flow-stimulated angiogenesis and vascular remodeling in vivo. J Transl Med. 2019 Jan 11;17(1):22. doi: 10.1186/s12967-019-1767-9. PMID: 30635008; PMCID: PMC6330440.
- Qin W, Myers SA, Carey DK, Carr SA, Ting AY. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat Commun. 2021 Aug 17;12(1):4980. doi: 10.1038/s41467-021-25259-2. PMID: 34404792; PMCID: PMC8370977.
- Wang M, Wu H, Li S, Xu Z, Li X, Yang Y, Li B, Li Y, Guo J, Chen H. SYNJ2BP promotes the degradation of PTEN through the lysosome-pathway and enhances breast tumor metastasis via PI3K/AKT/SNAI1 signaling. Oncotarget. 2017 Sep 19;8(52):89692-89706. doi: 10.18632/oncotarget.21058. PMID: 29163781; PMCID: PMC5685702.
- Peng L, Guo JC, Long L, Pan F, Zhao JM, Xu LY, Li EM. A Novel Clinical Six-Flavoprotein-Gene Signature Predicts Prognosis in Esophageal Squamous Cell Carcinoma. Biomed Res Int. 2019 Oct 30;2019:3869825. doi: 10.1155/2019/3869825. PMID: 31815134; PMCID: PMC6878914.
- Horiguchi A, Oya M, Uchida A, Marumo K, Murai M. Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J Urol. 2003 Feb;169(2):710-3. doi: 10.1097/01.ju.0000038952.59355.b2. PMID: 12544348.
- Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S, Rothhut S, Jacqmin D, Helwig JJ, Massfelder T. The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res. 2006 May 15;66(10):5130-42. doi: 10.1158/0008-5472.CAN-05-1469. PMID: 16707436.
- Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018 May;15(5):273-291. doi: 10.1038/nrclinonc.2018.28. Epub 2018 Mar 6. PMID: 29508857.
- Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021 Apr;17(4):245-261. doi: 10.1038/s41581-020-00359-2. Epub 2020 Nov 3. PMID: 33144689; PMCID: PMC8172121.
- Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1α and HIF2α stability and tumor growth, angiogenesis, and metastasis. Mol Cancer Res. 2014 Oct;12(10):1520-31. doi: 10.1158/1541-7786.MCR-13-0682. Epub 2014 Aug 7. PMID: 25103499.
- Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9(4):317-24. doi: 10.1080/19336918.2015.1016686. Epub 2015 Aug 4. PMID: 26241004; PMCID: PMC4594353.
- Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther. 2018 Jul;17(7):1355-1364. doi: 10.1158/1535-7163.MCT-17-1299. PMID: 29967214; PMCID: PMC6034114.
- Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P, Li Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer. 2019 Jun 24;19(1):618. doi: 10.1186/s12885-019-5824-9. PMID: 31234823; PMCID: PMC6591840.
- Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020 Sep 24;11(9):797. doi: 10.1038/s41419-020-02998-6. PMID: 32973135; PMCID: PMC7515865.
- Hou W, Li GS, Gao L, Lu HP, Zhou HF, Kong JL, Chen G, Xia S, Wei HY. SYNJ2 is a novel and potential biomarker for the prediction and treatment of cancers: from lung squamous cell carcinoma to pan-cancer. BMC Med Genomics. 2022 May 17;15(1):114. doi: 10.1186/s12920-022-01266-0. PMID: 35581615; PMCID: PMC9112447.
- Ishigami S, Arigami T, Uenosono Y, Okumura H, Kurahara H, Uchikado Y, Setoyama T, Kita Y, Kijima Y, Nishizono Y, Nakajo A, Owaki T, Ueno S, Natsugoe S. Clinical implications of DLL4 expression in gastric cancer. J Exp Clin Cancer Res. 2013 Jul 30;32(1):46. doi: 10.1186/1756-9966-32-46. PMID: 23898884; PMCID: PMC3751047.
- Miao ZF, Xu H, Xu HM, Wang ZN, Zhao TT, Song YX, Xu YY. DLL4 overexpression increases gastric cancer stem/progenitor cell self-renewal ability and correlates with poor clinical outcome via Notch-1 signaling pathway activation. Cancer Med. 2017 Jan;6(1):245-257. doi: 10.1002/cam4.962. Epub 2016 Nov 28. PMID: 27891816; PMCID: PMC5269703.
- Wang Q, Shi Y, Butler HJ, Xue J, Wang G, Duan P, Zheng H. Role of delta-like ligand-4 in chemoresistance against docetaxel in MCF-7 cells. Hum Exp Toxicol. 2017 Apr;36(4):328-338. doi: 10.1177/0960327116650006. Epub 2016 Jun 22. PMID: 27334972.
- Dean M, Davis DA, Burdette JE. Activin A stimulates migration of the fallopian tube epithelium, an origin of high-grade serous ovarian cancer, through non-canonical signaling. Cancer Lett. 2017 Apr 10;391:114-124. doi: 10.1016/j.canlet.2017.01.011. Epub 2017 Jan 20. PMID: 28115208; PMCID: PMC5336484.
- Zhuo C, Hu D, Li J, Yu H, Lin X, Chen Y, Zhuang Y, Li Q, Zheng X, Yang C. Downregulation of Activin A Receptor Type 2A Is Associated with Metastatic Potential and Poor Prognosis of Colon Cancer. J Cancer. 2018 Sep 8;9(19):3626-3633. doi: 10.7150/jca.26790. PMID: 30310521; PMCID: PMC6171025.
- Rudge SA, Wakelam MJ. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res. 2016 Feb;57(2):176-92. doi: 10.1194/jlr.R059154. Epub 2015 Aug 24. PMID: 26302980; PMCID: PMC4727428.
- Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P3 Lipid Phosphatases in Breast Cancer. Int J Mol Sci. 2020 Dec 2;21(23):9189. doi: 10.3390/ijms21239189. PMID: 33276499; PMCID: PMC7730566.
- Kumar S, Srivastav RK, Wilkes DW, Ross T, Kim S, Kowalski J, Chatla S, Zhang Q, Nayak A, Guha M, Fuchs SY, Thomas C, Chakrabarti R. Estrogen-dependent DLL1-mediated Notch signaling promotes luminal breast cancer. Oncogene. 2019 Mar;38(12):2092-2107. doi: 10.1038/s41388-018-0562-z. Epub 2018 Nov 15. PMID: 30442981; PMCID: PMC6756232.
- Sales-Dias J, Silva G, Lamy M, Ferreira A, Barbas A. The Notch ligand DLL1 exerts carcinogenic features in human breast cancer cells. PLoS One. 2019 May 20;14(5):e0217002. doi: 10.1371/journal.pone.0217002. PMID: 31107884; PMCID: PMC6527237.
- Hofmann JJ, Iruela-Arispe ML. Notch signaling in blood vessels: who is talking to whom about what? Circ Res. 2007 Jun 8;100(11):1556-68. doi: 10.1161/01.RES.0000266408.42939.e4. PMID: 17556669.
- Huang Y, Lin L, Shanker A, Malhotra A, Yang L, Dikov MM, Carbone DP. Resuscitating cancer immunosurveillance: selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Res. 2011 Oct 1;71(19):6122-31. doi: 10.1158/0008-5472.CAN-10-4366. Epub 2011 Aug 8. PMID: 21825014; PMCID: PMC3185141.
- Flippe L, Gaignerie A, Sérazin C, Baron O, Saulquin X, Themeli M, Guillonneau C, David L. Rapid and Reproducible Differentiation of Hematopoietic and T Cell Progenitors From Pluripotent Stem Cells. Front Cell Dev Biol. 2020 Oct 20;8:577464. doi: 10.3389/fcell.2020.577464. PMID: 33195214; PMCID: PMC7606846.
- Szilágyi SS, Amsalem-Zafran AR, Shapira KE, Ehrlich M, Henis YI. Competition between type I activin and BMP receptors for binding to ACVR2A regulates signaling to distinct Smad pathways. BMC Biol. 2022 Feb 18;20(1):50. doi: 10.1186/s12915-022-01252-z. PMID: 35177083; PMCID: PMC8855587.
- Meyer RD, Zou X, Ali M, Ersoy E, Bondzie PA, Lavaei M, Alexandrov I, Henderson J, Rahimi N. TMIGD1 acts as a tumor suppressor through regulation of p21Cip1/p27Kip1 in renal cancer. Oncotarget. 2017 Dec 26;9(11):9672-9684. doi: 10.18632/oncotarget.23822. PMID: 29515762; PMCID: PMC5839393.