Suresh R Naik* and Dipesh Gamare
Volume6-Issue6
Dates: Received: 2025-02-20 | Accepted: 2025-06-08 | Published: 2025-06-09
Pages: 611-641
Abstract
Mercury is a pervasive, environmentally toxic global pollutant that significantly impacts ecosystems and human health. Its chemical and toxicological properties contribute to environmental contamination through natural processes like volcanic eruptions and human activities such as industrial emissions and agriculture. Over the past century, mercury levels in the environment have nearly doubled due to rapid industrialization, leading to bioaccumulation and biomagnification in food chains, especially in aquatic ecosystems, which significantly impact human food safety.
This review examines mercury's toxic effects on multiple organ systems through acute and chronic pathways. Mercury induces neurotoxicity, nephrotoxicity, immune dysfunction, cardiovascular damage, and endocrine disruption, including cancer promotion in both humans and animals. Mercury compounds and mercury-containing xenobiotics interfere with cellular and molecular mechanisms, leading to oxidative stress, DNA damage, mitochondrial damage, apoptosis, epigenetic alterations, and impaired signaling pathways.
The review also highlights mercury's environmental persistence, affecting biodiversity by impairing various species' growth, reproduction, and survival, from microorganisms to higher vertebrates and invertebrates. It explores mercury's broader ecological footprint, including its role in disrupting food web dynamics, soil health, and plant productivity, ultimately impacting global biodiversity and ecosystem stability. The potential for mercury-induced bioaccumulation in aquatic life is emphasized, highlighting its cascading effects on human food safety. Addressing these challenges, the review discusses advances in remediation strategies, such as chelation therapy, natural antioxidants of phytochemical origin, and innovative biotechnological interventions. By incorporating documented research findings, this review aims to inspire future research and policymaking to mitigate mercury's adverse health effects and ensure environmental sustainability.
Review Highlights:
- Mercury is a toxic pollutant harming ecosystems and human health globally.
- It bioaccumulates in food chains, impacting food safety and biodiversity.
- Mercury causes neuro, nephro, hepato, cardio, and endocrine toxicity, harming organs.
- It disrupts DNA, mitochondria, and cell signaling, leading to severe toxicity.
- Advances in remediation include chelation, antioxidants, and biotech solutions.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2116
Certificate of Publication

Copyright
© 2025 Naik SR, et al., Distributed under Creative Commons CC-BY 4.0
How to cite this article
Naik SR, Gamare D. Toxicity of Mercury and Its Compounds: Impacts on Human and Animal Health, Ecosystems, Mechanisms, and Bioremediation Strategies - A Systematic Review. J Biomed Res Environ Sci. 2025 Jun 09; 6(6): 611- 641. doi: 10.37871/jbres2116, Article ID: JBRES2116, Available at: https://www.jelsciences.com/articles/jbres2116.pdf
Subject area(s)
References
- Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012;101:133-64. doi: 10.1007/978-3-7643-8340-4_6. PMID: 22945569; PMCID: PMC4144270.
- Naik SR, Gamare D, Bhopatrao A. Chemical health hazards and toxicity of environmental pollutants on humans, animals and others: An overview. Journal of Toxicological Studies. 2024;2:1135. doi: 10.59400/jts.v2i1.1135.
- Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020 Sep 8;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691. PMID: 32964150; PMCID: PMC7490536.
- James AK, Nehzati S, Dolgova NV, Sokaras D, Kroll T, Eto K, O'Donoghue JL, Watson GE, Myers GJ, Krone PH, Pickering IJ, George GN. Rethinking the Minamata Tragedy: What Mercury Species Was Really Responsible? Environ Sci Technol. 2020 Mar 3;54(5):2726-2733. doi: 10.1021/acs.est.9b06253. Epub 2020 Feb 12. PMID: 31951385.
- ATSDR. 1999.
- Mercury emissions: The Global Context. USEPA 2024.
- Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Health. 2014 Mar;47(2):74-83. doi: 10.3961/jpmph.2014.47.2.74. Epub 2014 Mar 31. PMID: 24744824; PMCID: PMC3988285.
- Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1-14. doi: 10.1155/2019/6730305.
- Ward DM, Nislow KH, Folt CL. Bioaccumulation syndrome: Identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci. 2010 May;1195:62-83. doi: 10.1111/j.1749-6632.2010.05456.x. PMID: 20536817; PMCID: PMC2977981.
- Veeraswamy D, Subramanian A, Mohan D, Ettiyagounder P, Selvaraj PS, Ramasamy SP, Veeramani V. Exploring the origins and cleanup of mercury contamination: a comprehensive review. Environ Sci Pollut Res Int. 2024 Sep;31(41):53943-53972. doi: 10.1007/s11356-023-30636-z. Epub 2023 Nov 14. PMID: 37964142.
- Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, Chen Z, Rahim NS, Sekar M, Gopinath SCB, Mat Rani NNI, Batumalaie K, Yap PS. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024 Jan 22;9(5):5100-5126. doi: 10.1021/acsomega.3c07047. PMID: 38343989; PMCID: PMC10851382.
- Rice DC. The US EPA reference dose for methylmercury: Sources of uncertainty. Environ Res. 2004;95(3):406-13. doi: 10.1016/j.envres.2003.08.013. PMID: 15220074.
- Health-based air concentrations for mercury vapor health-based guidance values (Air Concentrations) for Mercury Vapor. New York State Department of Health. 2008.
- Revis NW, Osborne TR, Holdsworth G, Hadden C. Mercury in soil: A method for assessing acceptable limits. Arch environ contam toxicol. 1990;19:221-6. doi: 10.1007/BF01056090.
- Gazwi HSS, Yassien EE, Hassan HM. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf. 2020 Apr 1;192:110297. doi: 10.1016/j.ecoenv.2020.110297. Epub 2020 Feb 13. PMID: 32061979.
- Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, Fiorim J, Rossi de Batista P, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Valentim Vassallo D. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. doi: 10.1155/2012/949048. Epub 2012 Jul 2. PMID: 22811600; PMCID: PMC3395437.
- DesMarais TL, Costa M. Mechanisms of Chromium-Induced Toxicity. Curr Opin Toxicol. 2019 Apr;14:1-7. doi: 10.1016/j.cotox.2019.05.003. Epub 2019 May 17. PMID: 31511838; PMCID: PMC6737927.
- Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. Ecotoxicology. 2024 Jul;33(4-5):325-396. doi: 10.1007/s10646-024-02747-x. Epub 2024 Apr 29. PMID: 38683471; PMCID: PMC11213816.
- Barone G, Storelli A, Meleleo D, Dambrosio A, Garofalo R, Busco A, Storelli MM. Levels of Mercury, Methylmercury and Selenium in Fish: Insights into Children Food Safety. Toxics. 2021 Feb 20;9(2):39. doi: 10.3390/toxics9020039. PMID: 33672494; PMCID: PMC7923435.
- Nigro M, Leonzio C. Intracellular storage of mercury and selenium in different marine vertebrates. Mar Ecol Prog Ser. 1996;135:137-43. doi: 10.3354/meps135137.
- Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M. Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ. 2015 Mar 15;509-510:91-103. doi: 10.1016/j.scitotenv.2014.05.142. Epub 2014 Jun 14. PMID: 24935263.
- Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012 Nov;45(6):344-52. doi: 10.3961/jpmph.2012.45.6.344. Epub 2012 Nov 29. PMID: 23230464; PMCID: PMC3514464.
- Bridges CC, Zalups RK. Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health B Crit Rev. 2010;13(5):385-410. doi: 10.1080/10937401003673750. PMID: 20582853; PMCID: PMC6943924.
- Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, Pan WK, Meyer JN. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair (Amst). 2017 Apr;52:31-48. doi: 10.1016/j.dnarep.2017.02.005. Epub 2017 Feb 13. PMID: 28242054; PMCID: PMC5394729.
- Mitra S, Chakraborty AJ, Tareq AM, Emran T Bin, Nainu F, Khusro A, Abubakr M. Idris, Mayeen Uddin Khandaker, Hamid Osman, Fahad A. Alhumaydhi, Jesus Simal-Gandara. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci. 2022;34:101865. doi: 10.1016/j.jksus.2022.101865.
- Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect. 2006 Feb;114(2):297-301. doi: 10.1289/ehp.7861. PMID: 16451871; PMCID: PMC1367848.
- Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Amiri RJ, Pirzadeh M, Moghadamnia AA. Aluminum Poisoning with Emphasis on Its Mechanism and Treatment of Intoxication. Emerg Med Int. 2022 Jan 11;2022:1480553. doi: 10.1155/2022/1480553. PMID: 35070453; PMCID: PMC8767391.
- Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, Chen Z, Rahim NS, Sekar M, Gopinath SCB, Mat Rani NNI, Batumalaie K, Yap PS. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024 Jan 22;9(5):5100-5126. doi: 10.1021/acsomega.3c07047. PMID: 38343989; PMCID: PMC10851382.
- Lash LH. Mercury nephrotoxicity. Encyclopedia of Metalloproteins, New York, NY: Springer New York; 2013:1357-62. doi: 10.1007/978-1-4614-1533-6_327.
- Ellingsen DG, Efskind J, Berg KJ, Gaarder PI, Thomassen Y. Renal and immunologic markers for chloralkali workers with low exposure to mercury vapor. Scand J Work Environ Health. 2000 Oct;26(5):427-35. doi: 10.5271/sjweh.564. PMID: 1110384.
- Diamond GL, Zalups RK. Understanding renal toxicity of heavy metals. Toxicol Pathol. 1998 Jan-Feb;26(1):92-103. doi: 10.1177/019262339802600111. PMID: 9502391.
- Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH. Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem. 2002 Jun 7;277(23):20438-45. doi: 10.1074/jbc.M110631200. Epub 2002 Mar 28. PMID: 11923282.
- Lee HT, Oh S, Ro DH, Yoo H, Kwon YW. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis. J Lipid Atheroscler. 2020 Sep;9(3):419-434. doi: 10.12997/jla.2020.9.3.419. Epub 2020 Sep 21. PMID: 33024734; PMCID: PMC7521974.
- Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. J Toxicol Environ Health B Crit Rev. 2017;20(2):55-80. doi: 10.1080/10937404.2016.1243501. Epub 2017 Feb 7. PMID: 28339347; PMCID: PMC6088787.
- Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012 Nov;45(6):344-52. doi: 10.3961/jpmph.2012.45.6.344. Epub 2012 Nov 29. PMID: 23230464; PMCID: PMC3514464.
- Ni M, Li X, Marreilha dos Santos AP, Farina M, Teixeira da Rocha JB, Avila DS, et al. Mercury. Reproductive and developmental toxicology, Elsevier; 2011. p.451-9. doi: 10.1016/B978-0-12-382032-7.10035-9.
- Dhanapriya J, Gopalakrishnan N, Arun V, Dineshkumar T, Sakthirajan R, Balasubramaniyan T, Haris M. Acute kidney injury and disseminated intravascular coagulation due to mercuric chloride poisoning. Indian J Nephrol. 2016 May-Jun;26(3):206-8. doi: 10.4103/0971-4065.164230. PMID: 27194836; PMCID: PMC4862267.
- Bernard A, Lauwerys R. Epidemiological application of early markers of nephrotoxicity. Toxicol Lett. 1989 Mar;46(1-3):293-306. doi: 10.1016/0378-4274(89)90137-9. PMID: 2705200.
- Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health B Crit Rev. 2017;20(3):119-154. doi: 10.1080/10937404.2017.1289834. Epub 2017 Apr 5. PMID: 28379072; PMCID: PMC6317349.
- Zalups RK, Barfuss DW, Kostyniak PJ. Altered intrarenal accumulation of mercury in uninephrectomized rats treated with methylmercury chloride. Toxicol Appl Pharmacol. 1992 Aug;115(2):174-82. doi: 10.1016/0041-008x(92)90321-i. PMID: 1641852.
- Bridges CC, Zalups RK. Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health B Crit Rev. 2010;13(5):385-410. doi: 10.1080/10937401003673750. PMID: 20582853; PMCID: PMC6943924.
- Donadio C, Tramonti G, Lucchesi A, Giordani R, Lucchetti A, Bianchi C. Gamma-glutamyltransferase is a reliable marker for tubular effects of contrast media. Ren Fail. 1998 Mar;20(2):319-24. doi: 10.3109/08860229809045117. PMID: 9574458.
- Bernard A, Lauwerys R. Epidemiological application of early markers of nephrotoxicity. Toxicol Lett. 1989 Mar;46(1-3):293-306. doi: 10.1016/0378-4274(89)90137-9. PMID: 2705200.
- Franko A, Budihna MV, Dodic-Fikfak M. Long-term effects of elemental mercury on renal function in miners of the Idrija Mercury Mine. Ann Occup Hyg. 2005 Aug;49(6):521-7. doi: 10.1093/annhyg/mei022. Epub 2005 Jun 17. PMID: 15964879.
- Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008 Jan;101(1):159-70. doi: 10.1093/toxsci/kfm260. Epub 2007 Oct 13. PMID: 17934191; PMCID: PMC2744478.
- Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. J Toxicol Environ Health B Crit Rev. 2017;20(2):55-80. doi: 10.1080/10937404.2016.1243501. Epub 2017 Feb 7. PMID: 28339347; PMCID: PMC6088787.
- Urbano T, Malavolti M, Vinceti M, Filippini T. Mercuric chloride (HgCl2). Encyclopedia of Toxicology, Elsevier; 2024. p.117-22. doi: 10.1016/B978-0-12-824315-2.00084-1.
- Miller S, Pallan S, Gangji AS, Lukic D, Clase CM. Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am J Kidney Dis. 2013 Jul;62(1):135-8. doi: 10.1053/j.ajkd.2013.02.372. Epub 2013 Apr 18. PMID: 23602193.
- Maria Francis Y, Karunakaran B, Ashfaq F, Yahia Qattan M, Ahmad I, Alkhathami AG, Idreesh Khan M, Varadhan M, Govindan L, Ponnusamy Kasirajan S. Mercuric Chloride Induced Nephrotoxicity: Ameliorative Effect of Carica papaya Leaves Confirmed by Histopathology, Immunohistochemistry, and Gene Expression Studies. ACS Omega. 2023 Jun 5;8(24):21696-21708. doi: 10.1021/acsomega.3c01045. Retraction in: ACS Omega. 2025 Feb 28;10(9):9808. doi: 10.1021/acsomega.5c01751. PMID: 37360438; PMCID: PMC10286259.
- Nath KA, Croatt AJ, Likely S, Behrens TW, Warden D. Renal oxidant injury and oxidant response induced by mercury. Kidney Int. 1996 Sep;50(3):1032-43. doi: 10.1038/ki.1996.406. PMID: 8872981.
- Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, Chen Z, Rahim NS, Sekar M, Gopinath SCB, Mat Rani NNI, Batumalaie K, Yap PS. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024 Jan 22;9(5):5100-5126. doi: 10.1021/acsomega.3c07047. PMID: 38343989; PMCID: PMC10851382.
- Alhusaini A, Alghilani S, Alhuqbani W, Hasan IH. Vitamin E and Lactobacillus Provide Protective Effects Against Liver Injury Induced by HgCl2: Role of CHOP, GPR87, and mTOR Proteins. Dose Response. 2021 Apr 26;19(2):15593258211011360. doi: 10.1177/15593258211011360. PMID: 33994889; PMCID: PMC8083003.
- Francis YM, Vijayakumar J, Raghunath G, Vijayalakshmi S, Sivanesan S, Vijayaraghavan R, Ethirajan S. Protective effect of carica papaya leaf extract against mercuric chloride-induced nephrotoxicity in wistar rats. Pharmacogn Mag. 2020;16:379. doi: 10.4103/pm.pm_11_20.
- Song Y, Lee CK, Kim KH, Lee JT, Suh C, Kim SY, Kim JH, Son BC, Kim DH, Lee S. Factors associated with total mercury concentrations in maternal blood, cord blood, and breast milk among pregnant women in Busan, Korea. Asia Pac J Clin Nutr. 2016;25(2):340-9. doi: 10.6133/apjcn.2016.25.2.16. PMID: 27222418.
- Zhang X, Agborbesong E, Li X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int J Mol Sci. 2021 Oct 19;22(20):11253. doi: 10.3390/ijms222011253. PMID: 34681922; PMCID: PMC8537003.
- Dybiec J, Szlagor M, Młynarska E, Rysz J, Franczyk B. Structural and Functional Changes in Aging Kidneys. Int J Mol Sci. 2022 Dec 6;23(23):15435. doi: 10.3390/ijms232315435. PMID: 36499760; PMCID: PMC9737118.
- Kazantzis G. Mercury exposure and early effects: an overview. Med Lav. 2002 May-Jun;93(3):139-47. PMID: 12197264.
- Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, Chen Z, Rahim NS, Sekar M, Gopinath SCB, Mat Rani NNI, Batumalaie K, Yap PS. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024 Jan 22;9(5):5100-5126. doi: 10.1021/acsomega.3c07047. PMID: 38343989; PMCID: PMC10851382.
- Aschner M, Aschner JL. Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev. 1990 Summer;14(2):169-76. doi: 10.1016/s0149-7634(05)80217-9. PMID: 2190116.
- Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, Fiorim J, Rossi de Batista P, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Valentim Vassallo D. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. doi: 10.1155/2012/949048. Epub 2012 Jul 2. PMID: 22811600; PMCID: PMC3395437.
- Oliveira CS, Nogara PA, Ardisson-Araújo DMP, Aschner M, Rocha JBT, Dórea JG. Neurodevelopmental Effects of Mercury. Adv Neurotoxicol. 2018;2:27-86. doi: 10.1016/bs.ant.2018.03.005. Epub 2018 May 24. PMID: 32346667; PMCID: PMC7188190.
- Chang LW. Neurotoxic effects of mercury--a review. Environ Res. 1977 Dec;14(3):329-73. doi: 10.1016/0013-9351(77)90044-5. PMID: 338298.
- Karri V, Schuhmacher M Professor, Kumar V. A systems toxicology approach to compare the heavy metal mixtures (Pb, As, MeHg) impact in neurodegenerative diseases. Food Chem Toxicol. 2020 May;139:111257. doi: 10.1016/j.fct.2020.111257. Epub 2020 Mar 14. PMID: 32179164.
- Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics. 2018 Sep 15;187:106-125. doi: 10.1016/j.jprot.2018.06.020. Epub 2018 Jul 12. PMID: 30017948.
- Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Michalke B, Skalnaya MG, Skalny AV, Butnariu M, Dadar M, Sarac I, Aaseth J, Bjørklund G. Sulfhydryl groups as targets of mercury toxicity. Coord Chem Rev. 2020 Aug 15;417:213343. doi: 10.1016/j.ccr.2020.213343. Epub 2020 May 7. PMID: 32905350; PMCID: PMC7470069.
- Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. Sci Total Environ. 2024 Sep 15;943:173577. doi: 10.1016/j.scitotenv.2024.173577. Epub 2024 Jun 7. PMID: 38852866.
- Roos D, Seeger R, Puntel R, Vargas Barbosa N. Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol. 2012;2012:248764. doi: 10.1155/2012/248764. Epub 2012 Jul 3. PMID: 22927718; PMCID: PMC3425894.
- Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. Toxics. 2021 Jun 17;9(6):142. doi: 10.3390/toxics9060142. PMID: 34204190; PMCID: PMC8235163.
- Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis. 2023 Aug;184:106232. doi: 10.1016/j.nbd.2023.106232. Epub 2023 Jul 20. PMID: 37479091.
- Wang W, Chen F, Zhang L, Wen F, Yu Q, Li P, Zhang A. Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction. Sci Total Environ. 2023 May 15;873:162358. doi: 10.1016/j.scitotenv.2023.162358. Epub 2023 Feb 21. PMID: 36822423.
- Aschner M, Yao CP, Allen JW, Tan KH. Methylmercury alters glutamate transport in astrocytes. Neurochem Int. 2000 Aug-Sep;37(2-3):199-206. doi: 10.1016/s0197-0186(00)00023-1. PMID: 10812205.
- Monaghan DT, Cotman CW. Distribution of N-methyl-D-aspartate-sensitive L-3Hglutamate-binding sites in rat brain. J Neurosci. 1985 Nov;5(11):2909-19. doi: 10.1523/JNEUROSCI.05-11-02909.1985. PMID: 2865341; PMCID: PMC6565182.
- Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379-87. doi: 10.1016/0165-6147(90)90184-a. PMID: 2238094.
- Guo C, Ma YY. Calcium Permeable-AMPA Receptors and Excitotoxicity in Neurological Disorders. Front Neural Circuits. 2021 Aug 17;15:711564. doi: 10.3389/fncir.2021.711564. PMID: 34483848; PMCID: PMC8416103.
- Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABAA receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis. 2024 Oct 1;200:106633. doi: 10.1016/j.nbd.2024.106633. Epub 2024 Aug 6. PMID: 39117119.
- Sasaki S, Negishi T, Tsuzuki T, Yukawa K. Methylmercury-induced reactive oxygen species-dependent and independent dysregulation of MAP kinase-related signaling pathway in cultured normal rat cerebellar astrocytes. Toxicology. 2023 Mar 15;487:153463. doi: 10.1016/j.tox.2023.153463. Epub 2023 Feb 20. PMID: 36813253.
- Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. Sci Total Environ. 2024 Sep 15;943:173577. doi: 10.1016/j.scitotenv.2024.173577. Epub 2024 Jun 7. PMID: 38852866.
- Farina M, Rocha JB, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011 Oct 10;89(15-16):555-63. doi: 10.1016/j.lfs.2011.05.019. Epub 2011 Jun 13. PMID: 21683713; PMCID: PMC3183295.
- Martínez-Hernández MI, Acosta-Saavedra LC, Hernández-Kelly LC, Loaeza-Loaeza J, Ortega A. Microglial Activation in Metal Neurotoxicity: Impact in Neurodegenerative Diseases. Biomed Res Int. 2023 Jan 31;2023:7389508. doi: 10.1155/2023/7389508. PMID: 36760476; PMCID: PMC9904912.
- Verity MA, Sarafian T, Pacifici EH, Sevanian A. Phospholipase A2 stimulation by methyl mercury in neuron culture. J Neurochem. 1994 Feb;62(2):705-14. doi: 10.1046/j.1471-4159.1994.62020705.x. PMID: 8294933.
- Brookes PC, mcgrath sp. Effect of metal toxicity on the size of the soil microbial biomass. Journal of soil science 1984;35:341-6. doi: 10.1111/j.1365-2389.1984.tb00288.x.
- Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL. Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int J Toxicol. 2009 May-Jun;28(3):190-206. doi: 10.1177/1091581809338077. PMID: 19546257.
- Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di Lisa F, Bernardi P. Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem. 2004 Jun 11;279(24):25219-25. doi: 10.1074/jbc.M310381200. Epub 2004 Apr 7. PMID: 15070903.
- Krishna Chandran AM, Christina H, Das S, Mumbrekar KD, Satish Rao BS. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model. Environ Toxicol Pharmacol. 2019 Oct;71:103224. doi: 10.1016/j.etap.2019.103224. Epub 2019 Jul 23. PMID: 31376681.
- Farina M, Aschner M, Rocha JB. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol. 2011 Nov 1;256(3):405-17. doi: 10.1016/j.taap.2011.05.001. Epub 2011 May 9. PMID: 21601588; PMCID: PMC3166649.
- Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034. PMID: 24845678; PMCID: PMC4055301.
- Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016 Jul 25;15(1):71. doi: 10.1186/s12937-016-0186-5. PMID: 27456681; PMCID: PMC4960740.
- Fujimura M, Usuki F. Methylmercury-Mediated Oxidative Stress and Activation of the Cellular Protective System. Antioxidants (Basel). 2020 Oct 16;9(10):1004. doi: 10.3390/antiox9101004. PMID: 33081221; PMCID: PMC7602710.
- Chapman L, Chan HM. The influence of nutrition on methyl mercury intoxication. Environ Health Perspect. 2000 Mar;108 Suppl 1(Suppl 1):29-56. doi: 10.1289/ehp.00108s129. PMID: 10698722; PMCID: PMC1637774.
- Kaur P, Evje L, Aschner M, Syversen T. The in vitro effects of Trolox on methylmercury-induced neurotoxicity. Toxicology. 2010 Sep 30;276(1):73-8. doi: 10.1016/j.tox.2010.07.006. Epub 2010 Jul 15. PMID: 20637824.
- Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol. 2007 Dec;20(12):1919-26. doi: 10.1021/tx7002323. Epub 2007 Oct 19. PMID: 17944542.
- Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S. Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res. 2007 Apr;11(3-4):241-60. doi: 10.1007/BF03033570. PMID: 17449462.
- Grotto D, Valentini J, Fillion M, Passos CJ, Garcia SC, Mergler D, Barbosa F Jr. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci Total Environ. 2010 Jan 15;408(4):806-11. doi: 10.1016/j.scitotenv.2009.10.053. Epub 2009 Nov 14. PMID: 19914681.
- Rocha JB, Freitas AJ, Marques MB, Pereira ME, Emanuelli T, Souza DO. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Braz J Med Biol Res. 1993 Oct;26(10):1077-83. PMID: 8312839.
- Wagner C, Sudati JH, Nogueira CW, Rocha JB. In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury. Biometals. 2010 Dec;23(6):1171-7. doi: 10.1007/s10534-010-9367-4. Epub 2010 Aug 18. PMID: 20717703.
- Farina M, Dahm KC, Schwalm FD, Brusque AM, Frizzo ME, Zeni G, Souza DO, Rocha JB. Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci. 2003 May;73(1):135-40. doi: 10.1093/toxsci/kfg058. Epub 2003 Apr 15. PMID: 12700422.
- Fitsanakis VA, Aschner M. The importance of glutamate, glycine, and gamma-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicol Appl Pharmacol. 2005 May 1;204(3):343-54. doi: 10.1016/j.taap.2004.11.013. PMID: 15845423.
- Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007 Feb 2;1131(1):1-10. doi: 10.1016/j.brainres.2006.10.070. Epub 2006 Dec 19. PMID: 17182013; PMCID: PMC1847599.
- Cediel-Ulloa A, Lindner S, Rüegg J, Broberg K. Epigenetics of methylmercury. Neurotoxicology. 2023 Jul;97:34-46. doi: 10.1016/j.neuro.2023.05.004. Epub 2023 May 8. PMID: 37164037.
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020 Nov 26;9(1):42. doi: 10.1186/s40035-020-00221-2. PMID: 33239064; PMCID: PMC7689983.
- Solt I, Bornstein J. Childhood vaccines and autism--much ado about nothing?. Harefuah. 2010 Apr;149(4):251-5, 260. Hebrew. PMID: 20812501.
- Bittencourt LO, Chemelo VS, Aragão WAB, Puty B, Dionizio A, Teixeira FB, Fernandes MS, Silva MCF, Fernandes LMP, de Oliveira EHC, Buzalaf MAR, Crespo-Lopez ME, Maia CDSF, Lima RR. From Molecules to Behavior in Long-Term Inorganic Mercury Intoxication: Unraveling Proteomic Features in Cerebellar Neurodegeneration of Rats. Int J Mol Sci. 2021 Dec 22;23(1):111. doi: 10.3390/ijms23010111. PMID: 35008538; PMCID: PMC8745249.
- Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25(1):1-24. doi: 10.3109/10408449509089885. PMID: 7734058.
- Akagi H, Malm O, Kinjo Y, Harada M, Branches FJP, Pfeiffer WC, Hiroo Kato.
- Methylmercury pollution in the Amazon, Brazil. Science of the Total Environment. 1995;175:85-95. doi: 10.1016/0048-9697(95)04905-3.
- Frustaci A, Magnavita N, Chimenti C, Caldarulo M, Sabbioni E, Pietra R, Cellini C, Possati GF, Maseri A. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J Am Coll Cardiol. 1999 May;33(6):1578-83. doi: 10.1016/s0735-1097(99)00062-5. PMID: 10334427.
- Massaroni L, Oliveira EM, Stefanon I, Vassallo DV. Effects of mercury on the mechanical and electrical activity of the Langendorff-perfused rat heart. Braz J Med Biol Res. 1992;25(8):861-4. PMID: 1342624.
- Rhee HM, Choi BH. Hemodynamic and electrophysiological effects of mercury in intact anesthetized rabbits and in isolated perfused hearts. Exp Mol Pathol. 1989 Jun;50(3):281-90. doi: 10.1016/0014-4800(89)90038-5. PMID: 2721650.
- Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. Int J Environ Res Public Health. 2017 Jan 12;14(1):74. doi: 10.3390/ijerph14010074. PMID: 28085104; PMCID: PMC5295325.
- Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Seppänen K, Laukkanen JA, Salonen JT. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol. 2005 Jan;25(1):228-33. doi: 10.1161/01.ATV.0000150040.20950.61. Epub 2004 Nov 11. PMID: 15539625.
- Halbach S. Mercury compounds: lipophilicity and toxic effects on isolated myocardial tissue. Arch Toxicol. 1990;64(4):315-9. doi: 10.1007/BF01972992. PMID: 2386431.
- Magos L, Clarkson TW. Overview of the clinical toxicity of mercury. Ann Clin Biochem. 2006 Jul;43(Pt 4):257-68. doi: 10.1258/000456306777695654. PMID: 16824275.
- Lemos NB, Angeli JK, Faria Tde O, Ribeiro Junior RF, Vassallo DV, Padilha AS, Stefanon I. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery. PLoS One. 2012;7(11):e49005. doi: 10.1371/journal.pone.0049005. Epub 2012 Nov 7. PMID: 23145049; PMCID: PMC3492199.
- Omanwar S, Fahim M. Mercury Exposure and Endothelial Dysfunction: An Interplay Between Nitric Oxide and Oxidative Stress. Int J Toxicol. 2015 Jul-Aug;34(4):300-7. doi: 10.1177/1091581815589766. Epub 2015 Jun 9. PMID: 26060268.
- Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. Epub 2017 Jul 27. PMID: 28819546; PMCID: PMC5551541.
- Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. Oxid Med Cell Longev. 2020 Dec 28;2020:6627144. doi: 10.1155/2020/6627144. PMID: 33456670; PMCID: PMC7785350.
- Landstrom AP, Dobrev D, Wehrens XHT. Calcium Signaling and Cardiac Arrhythmias. Circ Res. 2017 Jun 9;120(12):1969-1993. doi: 10.1161/CIRCRESAHA.117.310083. PMID: 28596175; PMCID: PMC5607780.
- Fujimura M, Usuki F. Methylmercury-Mediated Oxidative Stress and Activation of the Cellular Protective System. Antioxidants (Basel). 2020 Oct 16;9(10):1004. doi: 10.3390/antiox9101004. PMID: 33081221; PMCID: PMC7602710.
- Ai X, Yan J, Carrillo E, Ding W. The Stress-Response MAP Kinase Signaling in Cardiac Arrhythmias. Rev Physiol Biochem Pharmacol. 2016;172:77-100. doi: 10.1007/112_2016_8. PMID: 27848025; PMCID: PMC6791713.
- Aviram M, Rosenblat M. Phospholipase A2 and phospholipase D are involved in macrophage NADPH oxidase-mediated oxidation of low density lipoprotein. Isr J Med Sci. 1996 Sep;32(9):749-56. PMID: 8865831.
- Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med. 2022 Aug 1;188:351-362. doi: 10.1016/j.freeradbiomed.2022.06.228. Epub 2022 Jun 30. PMID: 35779690.
- Vassallo DV, Simões MR, Giuberti K, Azevedo BF, Ribeiro Junior RF, Salaices M, Stefanon I. Effects of Chronic Exposure to Mercury on Angiotensin-Converting Enzyme Activity and Oxidative Stress in Normotensive and Hypertensive Rats. Arq Bras Cardiol. 2019 Apr;112(4):374-380. doi: 10.5935/abc.20180271. Epub 2019 Jan 7. PMID: 30624528; PMCID: PMC6459440.
- Raymond LJ, Ralston NVC. Mercury: selenium interactions and health implications. Neurotoxicology. 2020 Dec;81:294-299. doi: 10.1016/j.neuro.2020.09.020. Epub 2020 Oct 14. PMID: 35587137.
- Arbi S, Bester MJ, Pretorius L, Oberholzer HM. Adverse cardiovascular effects of exposure to cadmium and mercury alone and in combination on the cardiac tissue and aorta of Sprague-Dawley rats. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(6):609-624. doi: 10.1080/10934529.2021.1899534. Epub 2021 Mar 15. PMID: 33720805.
- Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. Int J Environ Res Public Health. 2017 Jan 12;14(1):74. doi: 10.3390/ijerph14010074. PMID: 28085104; PMCID: PMC5295325.
- Furieri LB, Fioresi M, Junior RF, Bartolomé MV, Fernandes AA, Cachofeiro V, Lahera V, Salaices M, Stefanon I, Vassallo DV. Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol. 2011 Sep 1;255(2):193-9. doi: 10.1016/j.taap.2011.06.015. Epub 2011 Jun 24. PMID: 21723307.
- Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens (Greenwich). 2011 Aug;13(8):621-7. doi: 10.1111/j.1751-7176.2011.00489.x. Epub 2011 Jul 11. PMID: 21806773; PMCID: PMC8108748.
- Wang C, Pi X, Yin S, Liu M, Tian T, Jin L, Liu J, Li Z, Wang L, Yuan Z, Wang Y, Ren A. Maternal exposure to heavy metals and risk for severe congenital heart defects in offspring. Environ Res. 2022 Sep;212(Pt C):113432. doi: 10.1016/j.envres.2022.113432. Epub 2022 May 6. PMID: 35533713.
- Baldissera MD, Souza CF, Grings M, Descovi SN, Henn AS, Flores EMM, Aleksandro S. da Silva, Guilhian Leipnitz, Bernardo Baldisserotto. Exposure to methylmercury chloride inhibits mitochondrial electron transport chain and phosphotransfer network in liver and gills of grass carp: Protective effects of diphenyl diselenide dietary supplementation as an alternative strategy for mercury toxicity. Aquaculture 2019;509:85-95. doi: 10.1016/j.aquaculture.2019.05.012.
- Overview of the endocrine system. US EPA. 2024.
- Zhu X, Kusaka Y, Sato K, Zhang Q. The endocrine disruptive effects of mercury. Environ Health Prev Med. 2000 Jan;4(4):174-83. doi: 10.1007/BF02931255. PMID: 21432482; PMCID: PMC2723593.
- Rowland AS, Baird DD, Weinberg CR, Shore DL, Shy CM, Wilcox AJ. The effect of occupational exposure to mercury vapour on the fertility of female dental assistants. Occup Environ Med. 1994 Jan;51(1):28-34. doi: 10.1136/oem.51.1.28. PMID: 8124459; PMCID: PMC1127897.
- Schrag SD, Dixon RL. Occupational exposures associated with male reproductive dysfunction. Annu Rev Pharmacol Toxicol. 1985;25:567-92. doi: 10.1146/annurev.pa.25.040185.003031. PMID: 2408559.
- Fossato da Silva DA, Teixeira CT, Scarano WR, Favareto AP, Fernandez CD, Grotto D, Barbosa F Jr, Kempinas Wde G. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol. 2011 May;31(4):431-9. doi: 10.1016/j.reprotox.2011.01.002. Epub 2011 Jan 22. PMID: 21262343.
- Heath JC, Abdelmageed Y, Braden TD, Goyal HO. The effects of chronic ingestion of mercuric chloride on fertility and testosterone levels in male Sprague Dawley rats. J Biomed Biotechnol. 2012;2012:815186. doi: 10.1155/2012/815186. Epub 2012 Jul 4. PMID: 22829750; PMCID: PMC3398687.
- Mocevic E, Specht IO, Marott JL, Giwercman A, Jönsson BA, Toft G, Lundh T, Bonde JP. Environmental mercury exposure, semen quality and reproductive hormones in Greenlandic Inuit and European men: a cross-sectional study. Asian J Androl. 2013 Jan;15(1):97-104. doi: 10.1038/aja.2012.121. Epub 2012 Dec 10. PMID: 23223027; PMCID: PMC3739114.
- Boujbiha MA, Hamden K, Guermazi F, Bouslama A, Omezzine A, Kammoun A, El Feki A. Testicular toxicity in mercuric chloride treated rats: association with oxidative stress. Reprod Toxicol. 2009 Jul;28(1):81-9. doi: 10.1016/j.reprotox.2009.03.011. Epub 2009 Apr 5. PMID: 19427169.
- Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH. Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol. 2006 Aug;19(8):1080-5. doi: 10.1021/tx0600705. PMID: 16918248.
- Kimura T. Effects of hypophysectomy and ACTH administration on the level of adrenal cholesterol side-chain desmolase. Endocrinology. 1969 Sep;85(3):492-9. doi: 10.1210/endo-85-3-492. PMID: 4389419.
- Yoshida M. Placental to fetal transfer of mercury and fetotoxicity. Tohoku J Exp Med. 2002 Feb;196(2):79-88. doi: 10.1620/tjem.196.79. PMID: 12498319.
- Dack K, Fell M, Taylor CM, Havdahl A, Lewis SJ. Prenatal Mercury Exposure and Neurodevelopment up to the Age of 5 Years: A Systematic Review. Int J Environ Res Public Health. 2022 Feb 10;19(4):1976. doi: 10.3390/ijerph19041976. PMID: 35206164; PMCID: PMC8871549.
- Choi BH, Lapham LW, Amin-Zaki L, Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain. J Neuropathol Exp Neurol 1978;37:719-33. doi:10.1097/00005072-197811000-00001.
- Hertz DL, Henry NL, Rae JM. Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug efficacy and toxicity in breast cancer patients. Pharmacogenomics. 2017 Apr;18(5):481-499. doi: 10.2217/pgs-2016-0205. Epub 2017 Mar 27. PMID: 28346074; PMCID: PMC6219438.
- Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol. 2019 Mar;52:37-47. doi: 10.1016/j.jtemb.2018.11.006. Epub 2018 Nov 14. PMID: 30732897.
- Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction. 2021 Oct 5;162(5):F111-F130. doi: 10.1530/REP-20-0596. PMID: 33929341; PMCID: PMC8484365.
- McGregor AJ, Mason HJ. Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function. Hum Exp Toxicol. 1991 May;10(3):199-203. doi: 10.1177/096032719101000309. PMID: 1678950.
- Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2009 Mar;12(3):206-23. doi: 10.1080/10937400902902062. PMID: 19466673.
- Chen A, Kim SS, Chung E, Dietrich KN. Thyroid hormones in relation to lead, mercury, and cadmium exposure in the National Health and Nutrition Examination Survey, 2007-2008. Environ Health Perspect. 2013 Feb;121(2):181-6. doi: 10.1289/ehp.1205239. Epub 2012 Nov 16. PMID: 23164649; PMCID: PMC3569681.
- Pamphlett R, Doble PA, Bishop DP. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One. 2021 Feb 9;16(2):e0246748. doi: 10.1371/journal.pone.0246748. PMID: 33561145; PMCID: PMC7872292.
- Ghosh N, Bhattacharya S. Thyrotoxicity of the chlorides of cadmium and mercury in rabbit. Biomed Environ Sci. 1992 Sep;5(3):236-40. PMID: 1449659.
- Goldman M, Blackburn P. The effect of mercuric chloride on thyroid function in the rat. Toxicol Appl Pharmacol. 1979 Mar 30;48(1 Pt 1):49-55. doi: 10.1016/s0041-008x(79)80007-1. PMID: 452043.
- Barregård L, Lindstedt G, Schütz A, Sällsten G. Endocrine function in mercury exposed chloralkali workers. Occup Environ Med. 1994 Aug;51(8):536-40. doi: 10.1136/oem.51.8.536. PMID: 7951778; PMCID: PMC1128033.
- Freeman HC, Sangalang G, Uthe JF, Ronald K. Steroidogenesis in vitro in the harp seal (Pagophilus groenlandicus) without and with methyl mercury treatment in vivo. Environ Physiol Biochem. 1975;5(6):428-39. PMID: 1213032.
- Veltman JC, Maines MD. Alterations of heme, cytochrome P-450, and steroid metabolism by mercury in rat adrenal. Arch Biochem Biophys. 1986 Aug 1;248(2):467-78. doi: 10.1016/0003-9861(86)90500-x. PMID: 2943220.
- Chowdhury AR, Arora U. Toxic effect of mercury on testes in different animal species. Indian J Physiol Pharmacol. 1982 Jul-Sep;26(3):246-9. PMID: 6217157.
- Mohamed MK, Burbacher TM, Mottet NK. Effects of methyl mercury on testicular functions in Macaca fascicularis monkeys. Pharmacol Toxicol. 1987 Jan;60(1):29-36. doi: 10.1111/j.1600-0773.1987.tb01715.x. PMID: 3562387.
- Dey S, Bhattacharya S. Ovarian damage to Channa punctatus after chronic exposure to low concentrations of Elsan, mercury, and ammonia. Ecotoxicol Environ Saf. 1989 Apr;17(2):247-57. doi: 10.1016/0147-6513(89)90044-4. PMID: 2737117.
- Reddy PS, Tuberty SR, Fingerman M. Effects of cadmium and mercury on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Ecotoxicol Environ Saf. 1997 Jun;37(1):62-5. doi: 10.1006/eesa.1997.1523. PMID: 9212337.
- Mukherjee D, Kumar V, Chakraborti P. Effect of mercuric chloride and cadmium chloride on gonadal function and its regulation in sexually mature common carp Cyprinus carpio. Biomed Environ Sci. 1994 Mar;7(1):13-24. PMID: 8024715.
- Zhu X, Kusaka Y, Sato K, Zhang Q. The endocrine disruptive effects of mercury. Environ Health Prev Med. 2000 Jan;4(4):174-83. doi: 10.1007/BF02931255. PMID: 21432482; PMCID: PMC2723593.
- Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci. 2024 Jul 16;25(14):7788. doi: 10.3390/ijms25147788. PMID: 39063030; PMCID: PMC11277414.
- Pollard KM, Cauvi DM, Toomey CB, Hultman P, Kono DH. Mercury-induced inflammation and autoimmunity. Biochim Biophys Acta Gen Subj. 2019 Dec;1863(12):129299. doi: 10.1016/j.bbagen.2019.02.001. Epub 2019 Feb 10. PMID: 30742953; PMCID: PMC6689266.
- Wada H, Cristol DA, McNabb FM, Hopkins WA. Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol. 2009 Aug 1;43(15):6031-8. doi: 10.1021/es803707f. PMID: 19731714.
- Kim SH, Sharma RP. Cytotoxicity of inorganic mercury in murine T and B lymphoma cell lines: involvement of reactive oxygen species, Ca(2+) homeostasis, and cytokine gene expression. Toxicol In Vitro. 2003 Aug;17(4):385-95. doi: 10.1016/s0887-2333(03)00040-7. PMID: 12849721.
- Hui LL, Chan MHM, Lam HS, Chan PHY, Kwok KM, Chan IHS, Li AM, Fok TF. Impact of fetal and childhood mercury exposure on immune status in children. Environ Res. 2016 Jan;144(Pt A):66-72. doi: 10.1016/j.envres.2015.11.005. Epub 2015 Nov 9. PMID: 26562044.
- Shenker BJ, Pankoski L, Zekavat A, Shapiro IM. Mercury-induced apoptosis in human lymphocytes: caspase activation is linked to redox status. Antioxid Redox Signal. 2002 Jun;4(3):379-89. doi: 10.1089/15230860260196182. PMID: 12215206.
- Shenker BJ, Pankoski L, Zekavat A, Shapiro IM. Mercury-induced apoptosis in human lymphocytes: caspase activation is linked to redox status. Antioxid Redox Signal. 2002 Jun;4(3):379-89. doi: 10.1089/15230860260196182. PMID: 12215206.
- Perrone P, Ortega-Luna R, Manna C, Álvarez-Ribelles Á, Collado-Diaz V. Increased Adhesiveness of Blood Cells Induced by Mercury Chloride: Protective Effect of Hydroxytyrosol. Antioxidants (Basel). 2024 Dec 20;13(12):1576. doi: 10.3390/antiox13121576. PMID: 39765902; PMCID: PMC11673208.
- Contrino J, Marucha P, Ribaudo R, Ference R, Bigazzi PE, Kreutzer DL. Effects of mercury on human polymorphonuclear leukocyte function in vitro. Am J Pathol. 1988 Jul;132(1):110-8. PMID: 3394794; PMCID: PMC1880613.
- Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci. 2006 Jun;1069:62-76. doi: 10.1196/annals.1351.006. PMID: 16855135.
- Patel DD, Kuchroo VK. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity. 2015 Dec 15;43(6):1040-51. doi: 10.1016/j.immuni.2015.12.003. PMID: 26682981.
- Han B, García-Mendoza D, van den Berg H, van den Brink NW. Modulatory Effects of Mercury (II) Chloride (HgCl2 ) on Chicken Macrophage and B-Lymphocyte Cell Lines with Viral-Like Challenges In Vitro. Environ Toxicol Chem. 2021 Oct;40(10):2813-2824. doi: 10.1002/etc.5169. Epub 2021 Sep 2. PMID: 34288095; PMCID: PMC9291928.
- Magee CN, Boenisch O, Najafian N. The role of costimulatory molecules in directing the functional differentiation of alloreactive T helper cells. Am J Transplant. 2012 Oct;12(10):2588-600. doi: 10.1111/j.1600-6143.2012.04180.x. Epub 2012 Jul 3. PMID: 22759274; PMCID: PMC3459149.
- Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014 Oct 7;5:491. doi: 10.3389/fimmu.2014.00491. PMID: 25339958; PMCID: PMC4188125.
- Poggi A, Carosio R, Spaggiari GM, Fortis C, Tambussi G, Dell'Antonio G, Dal Cin E, Rubartelli A, Zocchi MR. NK cell activation by dendritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 Tat C-terminal domain. J Immunol. 2002 Jan 1;168(1):95-101. doi: 10.4049/jimmunol.168.1.95. PMID: 11751951.
- Barreira da Silva R, Münz C. Natural killer cell activation by dendritic cells: balancing inhibitory and activating signals. Cell Mol Life Sci. 2011 Nov;68(21):3505-18. doi: 10.1007/s00018-011-0801-8. Epub 2011 Aug 23. PMID: 21861182; PMCID: PMC11114903.
- SSI 2017. SSI 2017 44th Annual meeting of the scandinavian society of immunology stockholm, sweden 17-20 october 2017. Scand J Immunol. 2017;86:249-350. doi: 10.1111/sji.12587.
- Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev. 2010 Nov;238(1):37-46. doi: 10.1111/j.1600-065X.2010.00963.x. PMID: 20969583; PMCID: PMC2975965.
- Vianna ADS, Matos EP, Jesus IM, Asmus CIRF, Câmara VM. Human exposure to mercury and its hematological effects: a systematic review. Cad Saude Publica. 2019 Feb 11;35(2):e00091618. doi: 10.1590/0102-311X00091618. PMID: 30758455.
- Rao MV, Chinoy NJ, Suthar MB, Rajvanshi MI. Role of ascorbic acid on mercuric chloride-induced genotoxicity in human blood cultures. Toxicol In Vitro. 2001 Dec;15(6):649-54. doi: 10.1016/s0887-2333(01)00081-9. PMID: 11698165.
- Rozgaj R, Kasuba V, Blanusa M. Mercury chloride genotoxicity in rats following oral exposure, evaluated by comet assay and micronucleus test. Arh Hig Rada Toksikol. 2005 Mar;56(1):9-15. PMID: 15969203.
- Pollard KM, Landberg GP. The in vitro proliferation of murine lymphocytes to mercuric chloride is restricted to mature T cells and is interleukin 1 dependent. Int Immunopharmacol. 2001 Mar;1(3):581-93. doi: 10.1016/s1567-5769(00)00034-5. PMID: 11367541.
- Baginski B. Effect of mercuric chloride on microbicidal activities of human polymorphonuclear leukocytes. Toxicology. 1988 Aug;50(3):247-56. doi: 10.1016/0300-483x(88)90042-x. PMID: 3394153.
- Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res. 2010 May;110(4):345-54. doi: 10.1016/j.envres.2010.02.001. Epub 2010 Feb 21. PMID: 20176347; PMCID: PMC2873228.
- Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol. 2023 May 23;23(1):201. doi: 10.1186/s12883-023-03239-x. PMID: 37221459; PMCID: PMC10203689.
- Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PSC, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun. 2018 Dec;95:100-123. doi: 10.1016/j.jaut.2018.10.012. Epub 2018 Oct 26. PMID: 30509385.
- Nielsen JB, Hultman P. Mercury-induced autoimmunity in mice. Environ Health Perspect. 2002 Oct;110 Suppl 5(Suppl 5):877-81. doi: 10.1289/ehp.02110s5877. PMID: 12426151; PMCID: PMC1241265.
- Kono DH, Balomenos D, Pearson DL, Park MS, Hildebrandt B, Hultman P, Pollard KM. The prototypic Th2 autoimmunity induced by mercury is dependent on IFN-gamma and not Th1/Th2 imbalance. J Immunol. 1998 Jul 1;161(1):234-40. PMID: 9647229.
- Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015 Sep;75(1):25-37. doi: 10.1016/j.cyto.2015.05.008. Epub 2015 Jun 11. PMID: 26073683; PMCID: PMC5118948.
- Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, Crainiceanu CM, Silbergeld EK. Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect. 2009 Dec;117(12):1932-8. doi: 10.1289/ehp.0900855. Epub 2009 Aug 19. PMID: 20049214; PMCID: PMC2799469.
- Huang YL, Lin TH. Effect of acute administration of mercuric chloride on the disposition of copper, zinc, and iron in the rat. Biol Trace Elem Res. 1997 Jul-Aug;58(1-2):159-68. doi: 10.1007/BF02910676. PMID: 9363330.
- Zhao G, Qi L, Wang Y, Li X, Li Q, Tang X, Wang X, Wu C. Antagonizing effects of curcumin against mercury-induced autophagic death and trace elements disorder by regulating PI3K/AKT and Nrf2 pathway in the spleen. Ecotoxicol Environ Saf. 2021 Oct 1;222:112529. doi: 10.1016/j.ecoenv.2021.112529. Epub 2021 Jul 19. PMID: 34293585.
- Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013 May 21;47(10):4967-83. doi: 10.1021/es305071v. Epub 2013 May 3. PMID: 23590191; PMCID: PMC3701261.
- Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res. 2020 Sep 29;8:49. doi: 10.1186/s40364-020-00228-x. PMID: 33005420; PMCID: PMC7526126.
- Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev. 2022 Oct;311(1):187-204. doi: 10.1111/imr.13092. Epub 2022 Jun 3. PMID: 35656941; PMCID: PMC10120860.
- ThyagaRajan S, Priyanka HP. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci. 2012 Jan;19(1):40-6. doi: 10.5214/ans.0972.7531.180410. PMID: 25205962; PMCID: PMC4117073.
- Pietsch P, Vohr HW, Degitz K, Gleichmann E. Immunological alterations inducible by mercury compounds. II. HgCl2 and gold sodium thiomalate enhance serum IgE and IgG concentrations in susceptible mouse strains. Int Arch Allergy Appl Immunol. 1989;90(1):47-53. PMID: 2509376.
- Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity. Toxicol Sci. 2017 Jul 1;158(1):227-239. doi: 10.1093/toxsci/kfx083. PMID: 28453771; PMCID: PMC6075572.
- Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009 May;229(1):152-72. doi: 10.1111/j.1600-065X.2009.00782.x. PMID: 19426221; PMCID: PMC3826168.
- Häggqvist B, Hultman P. Effects of deviating the Th2-response in murine mercury-induced autoimmunity towards a Th1-response. Clin Exp Immunol. 2003 Nov;134(2):202-9. doi: 10.1046/j.1365-2249.2003.02303.x. PMID: 14616778; PMCID: PMC1808855.
- Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191-212. doi: 10.1146/annurev.iy.11.040193.001203. PMID: 8386518.
- Colombo M, Hamelin C, Kouassi E, Fournier M, Bernier J. Differential effects of mercury, lead, and cadmium on IL-2 production by Jurkat T cells. Clin Immunol. 2004 Jun;111(3):311-22. doi: 10.1016/j.clim.2004.02.005. PMID: 15183152.
- Suurmond J, Diamond B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J Clin Invest. 2015 Jun;125(6):2194-202. doi: 10.1172/JCI78084. Epub 2015 May 4. PMID: 25938780; PMCID: PMC4497746.
- Tian X, Lin X, Zhao J, Cui L, Gao Y, Yu YL, Li B, Li YF. Gut as the target tissue of mercury and the extraintestinal effects. Toxicology. 2023 Jan 15;484:153396. doi: 10.1016/j.tox.2022.153396. Epub 2022 Dec 13. PMID: 36521575.
- Pinto DV, Raposo RS, Matos GA, Alvarez-Leite JI, Malva JO, Oriá RB. Methylmercury Interactions With Gut Microbiota and Potential Modulation of Neurogenic Niches in the Brain. Front Neurosci. 2020 Nov 3;14:576543. doi: 10.3389/fnins.2020.576543. PMID: 33224022; PMCID: PMC7670038.
- Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol. 2022 Aug;166:113224. doi: 10.1016/j.fct.2022.113224. Epub 2022 Jun 11. PMID: 35700822.
- Rupa SA, Patwary MAM, Matin MM, Ghann WE, Uddin J, Kazi M. Interaction of mercury species with proteins: towards possible mechanism of mercurial toxicology. Toxicol Res (Camb). 2023 May 30;12(3):355-368. doi: 10.1093/toxres/tfad039. PMID: 37397928; PMCID: PMC10311172.
- Gupta PK, Sastry KV. Effect of mercuric chloride on enzyme activities in the digestive system and chemical composition of liver and muscles of the catfish, Heteropneustes fossilis. Ecotoxicol Environ Saf. 1981 Dec;5(4):389-400. doi: 10.1016/0147-6513(81)90013-0. PMID: 6459225.
- Sastry KV, Gupta PK. In vitro inhibition of digestive enzymes by heavy metals and their reversal by chelating agent: Part I. Mercuric chloride intoxication. Bull Environ Contam Toxicol. 1978 Dec;20(6):729-35. doi: 10.1007/BF01683593. PMID: 107987.
- Zhao Y, Wang X, Qin Y, Zheng B. Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab eriocheir sinensis. Chinese Journal of Oceanology and Limnology. 2010;28:427-34. doi: 10.1007/s00343-010-9030-2.
- Posin SL, Kong EL, Sharma S. Mercury Toxicity. 2023 Aug 8. In: StatPearls Internet. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 29763110.
- Ghosh S, Nukavarapu SP, Jala VR. Effects of heavy metals on gut barrier integrity and gut microbiota. Microbiota and Host. 2023;2. doi: 10.1530/MAH-23-0015.
- Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol. 2022 Aug;166:113224. doi: 10.1016/j.fct.2022.113224. Epub 2022 Jun 11. PMID: 35700822.
- Jerrold B. Leikin, ahmed mian, esther jolanda van zuuren, dan randall. Mercury poisoning. DynaMedex. 2023.
- Vojdani A, Pangborn JB, Vojdani E, Cooper EL. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int J Immunopathol Pharmacol. 2003 Sep-Dec;16(3):189-99. doi: 10.1177/039463200301600302. PMID: 14611720.
- Tsai TL, Kuo CC, Pan WH, Wu TN, Lin P, Wang SL. Type 2 diabetes occurrence and mercury exposure - From the National Nutrition and Health Survey in Taiwan. Environ Int. 2019 May;126:260-267. doi: 10.1016/j.envint.2019.02.038. Epub 2019 Feb 27. PMID: 30825744.
- He K, Xun P, Liu K, Morris S, Reis J, Guallar E. Mercury exposure in young adulthood and incidence of diabetes later in life: the CARDIA Trace Element Study. Diabetes Care. 2013 Jun;36(6):1584-9. doi: 10.2337/dc12-1842. Epub 2013 Feb 19. PMID: 23423697; PMCID: PMC3661833.
- Roy C, Tremblay PY, Ayotte P. Is mercury exposure causing diabetes, metabolic syndrome and insulin resistance? A systematic review of the literature. Environ Res. 2017 Jul;156:747-760. doi: 10.1016/j.envres.2017.04.038. Epub 2017 May 5. PMID: 28482296.
- Pyszel A, Wróbel T, Szuba A, Andrzejak R. Wpływ narazenia na metale, benzen, pestycydy i tlenek etylenu na układ krwiotwórczy Effect of metals, benzene, pesticides and ethylene oxide on the haematopoietic system. Med Pr. 2005;56(3):249-55. Polish. PMID: 16218139.
- Robinson MM. Dermatitis medicamentosa simulating Hodgkin's disease due to mercury compounds. Ann Allergy. 1952 Jan-Feb;10(1):21-3. PMID: 14894984.
- Alam RTM, Abu Zeid EH, Khalifa BA, Arisha AH, Reda RM. Dietary exposure to methyl mercury chloride induces alterations in hematology, biochemical parameters, and mRNA expression of antioxidant enzymes and metallothionein in Nile tilapia. Environ Sci Pollut Res Int. 2021 Jun;28(24):31391-31402. doi: 10.1007/s11356-021-13014-5. Epub 2021 Feb 19. PMID: 33606169.
- Hilmy AM, Shabana MB, Said MM. Haematological responses to mercury toxicity in the marine teleost, Aphanius dispar (Rüpp). Comp Biochem Physiol C Comp Pharmacol. 1980;67C(2):147-58. doi: 10.1016/0306-4492(80)90010-6. PMID: 6108182.
- Vianna ADS, Matos EP, Jesus IM, Asmus CIRF, Câmara VM. Human exposure to mercury and its hematological effects: a systematic review. Cad Saude Publica. 2019 Feb 11;35(2):e00091618. doi: 10.1590/0102-311X00091618. PMID: 30758455.
- Silva-Filho R, Santos N, Santos MC, Nunes Á, Pinto R, Marinho C, Lima T, Fernandes MP, Santos JCC, Leite ACR. Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió - Alagoas (AL), Brazil. Ecotoxicol Environ Saf. 2021 Aug;219:112337. doi: 10.1016/j.ecoenv.2021.112337. Epub 2021 May 21. PMID: 34029837.
- Langworth S, Elinder CG, Göthe CJ, Vesterberg O. Biological monitoring of environmental and occupational exposure to mercury. Int Arch Occup Environ Health. 1991;63(3):161-7. doi: 10.1007/BF00381563. PMID: 1917065.
- Skalny AV, Aschner M, Sekacheva MI, Santamaria A, Barbosa F, Ferrer B, Aaseth J, Paoliello MMB, Rocha JBT, Tinkov AA. Mercury and cancer: Where are we now after two decades of research? Food Chem Toxicol. 2022 Jun;164:113001. doi: 10.1016/j.fct.2022.113001. Epub 2022 Apr 18. PMID: 35447290.
- Malarkey DE, Hoenerhoff MJ, Maronpot RR. Carcinogenesis. Fundamentals of Toxicologic Pathology, Elsevier; 2018. p.83-104. doi: 10.1016/B978-0-12-809841-7.00006-X.
- Russo MT, De Luca G, Palma N, Leopardi P, Degan P, Cinelli S, Pepe G, Mosesso P, Di Carlo E, Sorrentino C, Musiani P, Crebelli R, Bignami M, Dogliotti E. Oxidative Stress, Mutations and Chromosomal Aberrations Induced by In Vitro and In Vivo Exposure to Furan. Int J Mol Sci. 2021 Sep 7;22(18):9687. doi: 10.3390/ijms22189687. PMID: 34575853; PMCID: PMC8465244.
- Pelch KE, Tokar EJ, Merrick BA, Waalkes MP. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium. Toxicol Appl Pharmacol. 2015 Aug 1;286(3):159-67. doi: 10.1016/j.taap.2015.04.011. Epub 2015 Apr 25. PMID: 25922126; PMCID: PMC4461502.
- Virani S, Rentschler KM, Nishijo M, Ruangyuttikarn W, Swaddiwudhipong W, Basu N, Rozek LS. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere. 2016 Feb;145:284-90. doi: 10.1016/j.chemosphere.2015.10.123. Epub 2015 Dec 11. PMID: 26688266; PMCID: PMC5047795.
- Chakraborty D, Choudhury B. TOXIC effects of mercury on crop plants and its physiological and biochemical responses - a review. Int J Adv Res (Indore). 2023;11:168-74. doi: 10.21474/IJAR01/16236.