Vitaly Yu Plavskii*, Olga N Dudinova, Ludmila G Plavskaya, Antonina Iu00a0Tretyakova, Aliaksandr V Mikulich, Raman K Nahorny, Alexei D Svechko, Tatsiana S Ananich, Andrei N Sobchuk, Sergey V Yakimchuk and Ihar Au00a0Leusenka
Volume5-Issue11
Dates: Received: 2024-10-24 | Accepted: 2024-11-28 | Published: 2024-11-30
Pages: 1531-1555
Abstract
A quarter of a century after establishment of inhibitory effect of blue light on growth of cancer cells, many aspects of mechanism of photophysical and photochemical processes underlying the effect of above physical factor have been quite well studied. However, the most controversial question remains about molecules-acceptors of optical radiation. Important information about possible participation of particular endogenous compound in the implementation of photobiomodulation effect can be obtained from comparison of its absorption spectrum and spectrum of action of optical radiation on cells. In this regard, we studied the spectral dependence of light-induced changes in metabolic activity of HeLa cells as well as the dependence of ROS level formation in cells when exposed to radiation from LED sources, peaking at λmax = 395, 405, 415, 445,465 nm, in the energy dose range of 1.5-15.0 J/cm2. It has been shown for the first time that inhibitory effect of blue light as well as the level of light-induced ROS formation decrease with increasing wavelength of applied radiation. A new pattern has been established, consisting of change in the contribution of various types of ROS to photobiological effects recorded at different time intervals after the cessation of cell irradiation.
FullText HTML
FullText PDF
DOI: 10.37871/jbres2042
Certificate of Publication

Copyright
© 2024 Plavskii VY, et al. Distributed under Creative Commons CC-BY 4.0
How to cite this article
Plavskii VY, Dudinova ON, Plavskaya LG, Tretyakova AI, Mikulich AV, Nahorny RK, Svechko AD, Ananich TS, Sobchuk AN, Yakimchuk SV, Leusenka IA. Spectral Dependence of Inhibitory Effect of Blue Light on Cancer Cells and Effi cacy of Light-Induced Intracellular Generation of Reactive Oxygen Species In vitro. J Biomed Res Environ Sci. 2024 Nov 30; 5(11): 1531-1555. doi: 10.37871/ jbres2042, Article ID: JBRES2042, Available at: https://www.jelsciences.com/articles/jbres2042.pdf
Subject area(s)
References
- Ohara M, Kawashima Y, Katoh O, Watanabe H. Blue light inhibits the growth of B16 melanoma cells. Jpn J Cancer Res. 2002 May;93(5):551-8. doi: 10.1111/j.1349-7006.2002.tb01290.x. PMID: 12036451; PMCID: PMC5927036.
- Ohara M, Kawashima Y, Watanabe H, Kitajima S. Effects of blue-light-exposure on growth of extracorporeally circulated leukemic cells in rats with leukemia induced by 1-ethyl-1-nitrosourea. Int J Mol Med. 2002 Oct;10(4):407-11. PMID: 12239586.
- Ohara M, Kawashima Y, Kitajima S, Mitsuoka C, Watanabe H. Inhibition of lung metastasis of B16 melanoma cells exposed to blue light in mice. Int J Mol Med. 2002 Dec;10(6):701-5. PMID: 12429995.
- Ohara M, Kawashima Y, Kitajima S, Mitsuoka C, Watanabe H. Blue light inhibits the growth of skin tumors in the v-Ha-ras transgenic mouse. Cancer Sci. 2003 Feb;94(2):205-9. doi: 10.1111/j.1349-7006.2003.tb01420.x. PMID: 12708498; PMCID: PMC11160238.
- Ohara M, Fujikura T, Fujiwara H. Augmentation of the inhibitory effect of blue light on the growth of B16 melanoma cells by riboflavin. Int J Oncol. 2003 Jun;22(6):1291-5. PMID: 12738996.
- Ohara M, Kobayashi M, Fujiwara H, Kitajima S, Mitsuoka C, Watanabe H. Blue light inhibits melanin synthesis in B16 melanoma 4A5 cells and skin pigmentation induced by ultraviolet B in guinea-pigs. Photodermatol Photoimmunol Photomed. 2004 Apr;20(2):86-92. doi: 10.1111/j.1600-0781.2004.00077.x. PMID: 15030593.
- Serrage H, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci. 2019 Aug 1;18(8):1877-1909. doi: 10.1039/c9pp00089e. Epub 2019 Jun 11. PMID: 31183484; PMCID: PMC6685747.
- Chen Z, Huang S, Liu M. The review of the light parameters and mechanisms of Photobiomodulation on melanoma cells. Photodermatol Photoimmunol Photomed. 2022 Jan;38(1):3-11. doi: 10.1111/phpp.12715. Epub 2021 Jul 7. PMID: 34181781.
- Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol. 2022 Oct 13;12:1022973. doi: 10.3389/fonc.2022.1022973. PMID: 36313662; PMCID: PMC9606592.
- Plavskii VY, Sobchuk AN, Mikulich AV, Dudinova ON, Plavskaya LG, Tretyakova AI, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenka IA. Identification by methods of steady-state and kinetic spectrofluorimetry of endogenous porphyrins and flavins sensitizing the formation of reactive oxygen species in cancer cells. Photochem Photobiol. 2024 Sep-Oct;100(5):1310-1327. doi: 10.1111/php.13911. Epub 2024 Jan 23. PMID: 38258972.
- Plavskii VY, Plavskaya LG, Dudinova ON, Tretyakova AI, Mikulich AV, Sobchuk AN, Nahorny RK, Ananich TS, Svechko AD, Yakimchuk SV, Leusenko IA. Endogenous photoacceptors sensitizing photobiological reactions in somatic cells. J Appl Spectrosc. 2023;90(2):334-345. doi: 10.1007/s10812-023-01540-8.
- da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med Sci. 2023 Jun 13;38(1):136. doi: 10.1007/s10103-023-03801-6. PMID: 37310556.
- Matsumoto N, Yoshikawa K, Shimada M, Kurita N, Sato H, Iwata T, Higashijima J, Chikakiyo M, Nishi M, Kashihara H, Takasu C, Eto S, Takahashi A, Akutagawa M, Emoto T. Effect of light irradiation by light emitting diode on colon cancer cells. Anticancer Res. 2014 Sep;34(9):4709-16. PMID: 25202048.
- Sato K, Minai Y, Watanabe H. Effect of monochromatic visible light on intracellular superoxide anion production and mitochondrial membrane potential of B16F1 and B16F10 murine melanoma cells. Cell Biol Int. 2013 Jun;37(6):633-7. doi: 10.1002/cbin.10069. Epub 2013 Mar 13. PMID: 23404540.
- Nishio T, Kishi R, Sato K, Sato K. Blue light exposure enhances oxidative stress, causes DNA damage, and induces apoptosis signaling in B16F1 melanoma cells. Mutat Res Genet Toxicol Environ Mutagen. 2022 Nov-Dec;883-884:503562. doi: 10.1016/j.mrgentox.2022.503562. Epub 2022 Nov 19. PMID: 36462794.
- Tartaglione MF, Eléxpuru Zabaleta M, Lazzarini R, Piva F, Busilacchi EM, Poloni A, Ledda C, Rapisarda V, Santarelli L, Bracci M. Apoptotic mechanism activated by blue light and cisplatinum in cutaneous squamous cell carcinoma cells. Int J Mol Med. 2021 Apr;47(4):48. doi: 10.3892/ijmm.2021.4881. Epub 2021 Feb 12. PMID: 33576463; PMCID: PMC7891828.
- Zhuang J, Liu Y, Yuan Q, Liu J, Liu Y, Li H, Wang D. Blue light-induced apoptosis of human promyelocytic leukemia cells via the mitochondrial-mediated signaling pathway. Oncol Lett. 2018 May;15(5):6291-6296. doi: 10.3892/ol.2018.8162. Epub 2018 Mar 2. PMID: 29731847; PMCID: PMC5921239.
- Kim YM, Ko SH, Shin YI, Kim Y, Kim T, Jung J, Lee SY, Kim NG, Park KJ, Ryu JH. Light-emitting diode irradiation induces AKT/mTOR-mediated apoptosis in human pancreatic cancer cells and xenograft mouse model. J Cell Physiol. 2021 Feb;236(2):1362-1374. doi: 10.1002/jcp.29943. Epub 2020 Aug 4. PMID: 32749680.
- Yang F, Tu J, Pan JQ, Luo HL, Liu YH, Wan J, Zhang J, Wei PF, Jiang T, Chen YH, Wang LP. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death Dis. 2013 Oct 31;4(10):e893. doi: 10.1038/cddis.2013.425. PMID: 24176851; PMCID: PMC3920933.
- Toruner EK, Kayhan H, Ezgu FS. The effect of a geometric-shaped tool with blue led light on the activation of human dermal fibroblasts and cancer cells. Journal of Photochemistry and Photobiology. 2021;8:100087. doi: 10.1016/j.jpap.2021.100087.
- Yoshimoto T, Morine Y, Takasu C, Feng R, Ikemoto T, Yoshikawa K, Iwahashi S, Saito Y, Kashihara H, Akutagawa M, Emoto T, Kinouchi Y, Shimada M. Blue light-emitting diodes induce autophagy in colon cancer cells by Opsin 3. Ann Gastroenterol Surg. 2018 Jan 11;2(2):154-161. doi: 10.1002/ags3.12055. PMID: 29863164; PMCID: PMC5881358.
- Yoshimoto T, Shimada M, Tokunaga T, Nakao T, Nishi M, Takasu C, Kashihara H, Wada Y, Okikawa S, Yoshikawa K. Blue light irradiation inhibits the growth of colon cancer and activation of cancer‑associated fibroblasts. Oncol Rep. 2022 May;47(5):104. doi: 10.3892/or.2022.8315. Epub 2022 Apr 13. PMID: 35417035; PMCID: PMC9019302.
- Chen Z, Zhang R, Qin H, Jiang H, Wang A, Zhang X, Huang S, Sun M, Fan X, Lu Z, Li Y, Liu S, Liu M. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway. Lasers Med Sci. 2023 Feb 15;38(1):71. doi: 10.1007/s10103-023-03733-1. PMID: 36790539.
- He M, Yan G, Wang Y, Gong R, Lei H, Yu S, He X, Li G, Du W, Ma T, Gao M, Yu M, Liu S, Xu Z, Idiiatullina E, Zagidullin N, Pavlov V, Cai B, Yuan Y, Yang L. Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR. J Cell Mol Med. 2021 Jun;25(11):4962-4973. doi: 10.1111/jcmm.16412. Epub 2021 May 7. PMID: 33960631; PMCID: PMC8178260.
- Oh PS, Hwang H, Jeong HS, Kwon J, Kim HS, Kim M, Lim S, Sohn MH, Jeong HJ. Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy. Int J Biochem Cell Biol. 2016 Jan;70:13-22. doi: 10.1016/j.biocel.2015.11.004. Epub 2015 Nov 10. PMID: 26555754.
- Chen Z, Li W, Hu X, Liu M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. Biomed Opt Express. 2019 Dec 4;11(1):27-39. doi: 10.1364/BOE.11.000027. PMID: 32010497; PMCID: PMC6968738.
- Golovynska I, Golovynskyi S, Qu J. Comparing the Impact of NIR, Visible and UV Light on ROS Upregulation via Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochem Photobiol. 2023 Jan;99(1):106-119. doi: 10.1111/php.13661. Epub 2022 Jul 4. PMID: 35689798.
- Ang FY, Fukuzaki Y, Yamanoha B, Kogure S. Immunocytochemical studies on the effect of 405-nm low-power laser irradiation on human-derived A-172 glioblastoma cells. Lasers Med Sci. 2012 Sep;27(5):935-42. doi: 10.1007/s10103-011-1009-8. Epub 2011 Oct 26. PMID: 22041845.
- Takeuchi M, Nishisho T, Toki S, Kawaguchi S, Tamaki S, Oya T, Uto Y, Katagiri T, Sairyo K. Blue light induces apoptosis and autophagy by promoting ROS-mediated mitochondrial dysfunction in synovial sarcoma. Cancer Med. 2023 Apr;12(8):9668-9683. doi: 10.1002/cam4.5664. Epub 2023 Feb 1. PMID: 36722116; PMCID: PMC10166932.
- Yang J, Jiang H, Fu Q, Qin H, Li Y, Liu M. Blue light photobiomodulation induced apoptosis by increasing ROS level and regulating SOCS3 and PTEN/PI3K/AKT pathway in osteosarcoma cells. J Photochem Photobiol B. 2023 Dec;249:112814. doi: 10.1016/j.jphotobiol.2023.112814. Epub 2023 Nov 7. PMID: 37956614.
- Zhuang J, Xia L, Zou Z, Yin J. Blue light induces ROS mediated apoptosis and degradation of AML1-ETO oncoprotein in Kasumi-1 cells. Med Oncol. 2022 Feb 12;39(5):52. doi: 10.1007/s12032-022-01650-x. PMID: 35150326.
- Teng Y, Li Z, Liu J, Teng L, Li H. Proliferation inhibition and apoptosis of liver cancer cells treated by blue light irradiation. Med Oncol. 2023 Jul 6;40(8):227. doi: 10.1007/s12032-023-02096-5. PMID: 37410177.
- Yan G, Zhang L, Feng C, Gong R, Idiiatullina E, Huang Q, He M, Guo S, Yang F, Li Y, Ding F, Ma W, Pavlov V, Han Z, Wang Z, Xu C, Cai B, Yuan Y, Yang L. Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage. Int J Biochem Cell Biol. 2018 Oct;103:81-88. doi: 10.1016/j.biocel.2018.08.006. Epub 2018 Aug 17. PMID: 30125666.
- Li C, Zhu G, Cui Z, Zhang J, Zhang S, Wei Y. The strong inhibitory effect of combining anti-cancer drugs AT406 and rocaglamide with blue LED irradiation on colorectal cancer cells. Photodiagnosis Photodyn Ther. 2020 Jun;30:101797. doi: 10.1016/j.pdpdt.2020.101797. Epub 2020 Apr 29. PMID: 32360851.
- Zhou S, Yamada R, Sakamoto K. Low energy multiple blue light-emitting diode light Irradiation promotes melanin synthesis and induces DNA damage in B16F10 melanoma cells. PLoS One. 2023 Feb 2;18(2):e0281062. doi: 10.1371/journal.pone.0281062. PMID: 36730244; PMCID: PMC9894472.
- Lewis JB, Wataha JC, Messer RL, Caughman GB, Yamamoto T, Hsu SD. Blue light differentially alters cellular redox properties. J Biomed Mater Res B Appl Biomater. 2005 Feb 15;72(2):223-9. doi: 10.1002/jbm.b.30126. PMID: 15546154.
- Lockwood DB, Wataha JC, Lewis JB, Tseng WY, Messer RL, Hsu SD. Blue light generates reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells. Dent Mater. 2005 Jul;21(7):683-8. doi: 10.1016/j.dental.2004.07.022. PMID: 15978279.
- Lan CC, Lu EY, Pan HJ, Lee CH. Directional migration of cancer cells induced by a blue light intensity gradient. Biomed Opt Express. 2015 Jun 18;6(7):2624-32. doi: 10.1364/BOE.6.002624. PMID: 26203386; PMCID: PMC4505714.
- Kim YJ, Song J, Lee DH, Um SH, Bhang SH. Suppressing cancer by damaging cancer cell DNA using LED irradiation. J Photochem Photobiol B. 2023 Jun;243:112714. doi: 10.1016/j.jphotobiol.2023.112714. Epub 2023 Apr 15. PMID: 37084656.
- He M, Li G, He X, Wang Y, Lei H, Wang Q, Yan G, Gong R, Liu G, Li T, Cai B, Li L, Yuan Y. Blue LED causes cell death in human hepatoma by inducing DNA damage. 2020. doi: 10.21203/rs.3.rs-54193/v1.
- Kvam E, Tyrrell RM. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis. 1997 Dec;18(12):2379-84. doi: 10.1093/carcin/18.12.2379. PMID: 9450485.
- Wataha JC, Lewis JB, Lockwood PE, Hsu S, Messer RL, Rueggeberg FA, Bouillaguet S. Blue light differentially modulates cell survival and growth. J Dent Res. 2004 Feb;83(2):104-8. doi: 10.1177/154405910408300204. PMID: 14742645.
- Zhuang J, Liu J, Gao X, Li H. Inhibition of Proliferation in U937 Cells Treated by Blue Light Irradiation and Combined Blue Light Irradiation/Drug. Int J Mol Sci. 2018 May 15;19(5):1464. doi: 10.3390/ijms19051464. PMID: 29762467; PMCID: PMC5983758.
- Xia Y, Yu W, Cheng F, Rao T, Ruan Y, Yuan R, Ning J, Zhou X, Lin F, Zheng D. Photobiomodulation With Blue Laser Inhibits Bladder Cancer Progression. Front Oncol. 2021 Oct 18;11:701122. doi: 10.3389/fonc.2021.701122. PMID: 34733776; PMCID: PMC8558536.
- Feith M, Vičar T, Gumulec J, Raudenská M, Gjörloff Wingren A, Masařík M, Balvan J. Quantitative phase dynamics of cancer cell populations affected by blue light. Appl Sci. 2020;10(7):2597. doi: 10.3390/app10072597.
- Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol. 2018 Mar;94(2):199-212. doi: 10.1111/php.12864. Epub 2018 Jan 19. PMID: 29164625; PMCID: PMC5844808.
- Lubart R, Lavi R, Friedmann H, Rochkind S. Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg. 2006 Apr;24(2):179-85. doi: 10.1089/pho.2006.24.179. PMID: 16706696.
- Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B. 2014 Nov;140:344-58. doi: 10.1016/j.jphotobiol.2014.07.021. Epub 2014 Aug 21. PMID: 25226343.
- Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034. PMID: 24845678; PMCID: PMC4055301.
- D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24. doi: 10.1038/nrm2256. PMID: 17848967.
- Bastos EL, Quina FH, Baptista MS. Endogenous Photosensitizers in Human Skin. Chem Rev. 2023 Aug 23;123(16):9720-9785. doi: 10.1021/acs.chemrev.2c00787. Epub 2023 Jul 17. PMID: 37459506.
- Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J. 2006 Aug 15;91(4):1452-9. doi: 10.1529/biophysj.106.082388. Epub 2006 Jun 2. PMID: 16751234; PMCID: PMC1518628.
- Bäumler W, Regensburger J, Knak A, Felgenträger A, Maisch T. UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence. Photochem Photobiol Sci. 2012 Jan;11(1):107-17. doi: 10.1039/c1pp05142c. Epub 2011 Oct 11. PMID: 21986813.
- Tonolli PN, Martins WK, Junqueira HC, Silva MN, Severino D, Santacruz-Perez C, Watanabe I, Baptista MS. Lipofuscin in keratinocytes: Production, properties, and consequences of the photosensitization with visible light. Free Radic Biol Med. 2020 Nov 20;160:277-292. doi: 10.1016/j.freeradbiomed.2020.08.002. Epub 2020 Aug 15. PMID: 32810634.
- Tonolli PN, Vera Palomino CM, Junqueira HC, Baptista MS. The phototoxicity action spectra of visible light in HaCaT keratinocytes. J Photochem Photobiol B. 2023 Jun;243:112703. doi: 10.1016/j.jphotobiol.2023.112703. Epub 2023 Mar 28. PMID: 37023538.
- Lunova M, Smolková B, Uzhytchak M, Janoušková KŽ, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Dejneka A, Lunov O. Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations. Cell Mol Life Sci. 2020 Jul;77(14):2815-2838. doi: 10.1007/s00018-019-03321-z. Epub 2019 Oct 3. PMID: 31583425; PMCID: PMC11104903.
- Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. J Biophotonics. 2023 Dec;16(12):e202300253. doi: 10.1002/jbio.202300253. Epub 2023 Aug 31. PMID: 37589213.
- Kim H, Kim Y, Kim TH, Heo SY, Jung WK, Kang HW. Stimulatory effects of wavelength-dependent photobiomodulation on proliferation and angiogenesis of colorectal cancer. J Photochem Photobiol B. 2022 Sep;234:112527. doi: 10.1016/j.jphotobiol.2022.112527. Epub 2022 Jul 16. PMID: 35914464.
- Shakibaie M, Vaezjalali M, Rafii-Tabar H, Sasanpour P. Synergistic effect of phototherapy and chemotherapy on bladder cancer cells. J Photochem Photobiol B. 2019 Apr;193:148-154. doi: 10.1016/j.jphotobiol.2019.02.004. Epub 2019 Feb 18. PMID: 30884284.
- Shakibaie M, Vaezjalali M, Rafii-Tabar H, Sasanpour P. Phototherapy alters the oncogenic metabolic activity of breast cancer cells. Photodiagnosis Photodyn Ther. 2020 Jun;30:101695. doi: 10.1016/j.pdpdt.2020.101695. Epub 2020 Feb 25. PMID: 32109618.
- Oh PS, Kim HS, Kim EM, Hwang H, Ryu HH, Lim S, Sohn MH, Jeong HJ. Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. J Cell Physiol. 2017 Dec;232(12):3444-3453. doi: 10.1002/jcp.25805. Epub 2017 Apr 10. PMID: 28098340.
- Oh PS, Na KS, Hwang H, Jeong HS, Lim S, Sohn MH, Jeong HJ. Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling. J Photochem Photobiol B. 2015 Jan;142:197-203. doi: 10.1016/j.jphotobiol.2014.12.006. Epub 2014 Dec 12. PMID: 25550119.
- Sparsa A, Faucher K, Sol V, Durox H, Boulinguez S, Doffoel-Hantz V, Calliste CA, Cook-Moreau J, Krausz P, Sturtz FG, Bedane C, Jauberteau-Marchan MO, Ratinaud MH, Bonnetblanc JM. Blue light is phototoxic for B16F10 murine melanoma and bovine endothelial cell lines by direct cytocidal effect. Anticancer Res. 2010 Jan;30(1):143-7. PMID: 20150629.
- Oh PS, Kim EM, Boud F, Lim S, Jeong HJ. Blue Light Inhibits Proliferation of Metastatic Cancer Cells by Regulating Translational Initiation: A Synergistic Property with Anticancer Drugs. Photochem Photobiol. 2023 Nov-Dec;99(6):1438-1447. doi: 10.1111/php.13789. Epub 2023 Mar 9. PMID: 36732943.
- Hopkins SL, Siewert B, Askes SH, Veldhuizen P, Zwier R, Heger M, Bonnet S. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochem Photobiol Sci. 2016 May 11;15(5):644-53. doi: 10.1039/c5pp00424a. Epub 2016 Apr 21. PMID: 27098927; PMCID: PMC5044800.
- Zhuang J, Liu J, Liu Y, Li H, Wang D, Teng L. Enhanced proliferation inhibition of HL60 cells treated by synergistic all-trans retinoic acid/blue light/nanodiamonds. RSC advances. 2017;7(62):38895-38901. doi: 10.1039/C7RA04093H.
- Chen Z, Qin H, Lin S, Lu Z, Fan X, Liu X, Liu M. Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under Photobiomodulation of different light modes. J Photochem Photobiol B. 2021 Mar;216:112127. doi: 10.1016/j.jphotobiol.2021.112127. Epub 2021 Jan 19. PMID: 33517070.
- Esmaeeli M, Ahmadi-Zeidabadi M, JalalKamali M, Eskandary H, Shojaei M. Inhibitory effect of photobiomodulation on the proliferation rate of the u87 glioblastoma cell line. Int J Opt Photonics. 2021;15(2):197-208. doi: 10.52547/ijop.15.2.197.
- Jiang H, Qin H, Sun M, Lin S, Yang J, Liu M. Effect of blue light on the cell viability of A549 lung cancer cells and investigations into its possible mechanism. J Biophotonics. 2023 Sep;16(9):e202300047. doi: 10.1002/jbio.202300047. Epub 2023 Jun 10. PMID: 37265005.
- Choe SW, Park K, Park C, Ryu J, Choi H. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell. Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):79-85. doi: 10.1080/24699322.2017.1379158. Epub 2017 Sep 28. PMID: 28956464.
- Nishi M, Shimada M, Yoshikawa K, Higashijima J, Nakao T, Takasu C, Eto S, Teraoku H . Effect of light irradiation by light emitting diode on colon cancer cells and cancer stem cells. J Clin Oncol. 2015;33(3):271. doi: 10.1200/jco.2015.33.3_suppl.271.
- Yoshimoto T, Nishi M, Okikawa S, Yoshikawa K, Tokunaga T, Nakao T, Takasu C, Kashihara H, Wada Y, Takayuki Noma, Shimada M. Blue light irradiation inhibits the activation of cancer-associated macrophages in colon cancer. 2024. doi: 10.21203/rs.3.rs-3951809/v1.
- Mo S, Ku HJ, Choi SH, Jeong HJ, Park DG, Oh MH, Ahn JC. 470 nm LED Irradiation Inhibits the Invasiveness of CD133-positive Human Colorectal Cancer Stem Cells by Suppressing the Cyclooxygenase-2/prostaglandin E2 Pathway. Anticancer Res. 2021 Mar;41(3):1407-1420. doi: 10.21873/anticanres.14898. PMID: 33788732.
- Feng C, Gong R, Zheng Q, Yan G, He M, Lei H, Li X, Zhang L, Xu Z, Liu S, Yu M, Ma T, Gao M, Bamba D, Idiiatullina E, Zagidullin N, Pavlov V, Xu C, Yuan Y, Yang L. Synergistic anti-tumor effects of arsenic trioxide and blue LED irradiation on human osteosarcoma. Int J Biol Sci. 2019 Jan 1;15(2):386-394. doi: 10.7150/ijbs.28356. PMID: 30745828; PMCID: PMC6367547.
- Farias TG, Rodrigues JA, Dos Santos MS, Mencalha AL, de Souza da Fonseca A. Effects of low‑power red laser and blue LED on mRNA levels from DNA repair genes in human breast cancer cells. Lasers Med Sci. 2024 Feb 8;39(1):56. doi: 10.1007/s10103-024-04001-6. Erratum in: Lasers Med Sci. 2024 Feb 20;39(1):67. doi: 10.1007/s10103-024-04021-2. PMID: 38329547.
- da Silva TG, Rodrigues JA, Siqueira PB, Dos Santos Soares M, Mencalha AL, de Souza Fonseca A. Effects of photobiomodulation by low-power lasers and LEDs on the viability, migration, and invasion of breast cancer cells. Lasers Med Sci. 2023 Aug 23;38(1):191. doi: 10.1007/s10103-023-03858-3. PMID: 37610503.
- Tanaka H, Takahashi T, Okamoto K, Tokuda M, Yamaguchi F, Hirata Y. Suppression of cancer cell proliferation by high-intensity blue LED light. Physica Status Solidi. 2011;8(2):359-361. doi: 10.1002/pssc.201000467.
- Rotenberg S, Lewis JB, Lockwood PE, Tseng WY, Messer RL, Hsu SD, Omata Y, Wataha JC. Extracellular environment as one mediator of blue light-induced mitochondrial suppression. Dent Mater. 2006 Aug;22(8):759-64. doi: 10.1016/j.dental.2005.11.003. Epub 2005 Dec 20. PMID: 16364420.
- Omata Y, Lewis JB, Rotenberg S, Lockwood PE, Messer RL, Noda M, Hsu SD, Sano H, Wataha JC. Intra- and extracellular reactive oxygen species generated by blue light. J Biomed Mater Res A. 2006 Jun 1;77(3):470-7. doi: 10.1002/jbm.a.30663. PMID: 16482554.
- Patel AD, Rotenberg S, Messer RL, Wataha JC, Ogbureke KU, McCloud VV, Lockwood P, Hsu S, Lewis JB. Blue light activates phase 2 response proteins and slows growth of a431 epidermoid carcinoma xenografts. Anticancer Res. 2014 Nov;34(11):6305-13. PMID: 25368229.
- Mignon C, Uzunbajakava NE, Castellano-Pellicena I, Botchkareva NV, Tobin DJ. Differential response of human dermal fibroblast subpopulations to visible and near-infrared light: Potential of photobiomodulation for addressing cutaneous conditions. Lasers Surg Med. 2018 Oct;50(8):859-882. doi: 10.1002/lsm.22823. Epub 2018 Apr 17. PMID: 29665018.
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55-63. doi: 10.1016/0022-1759(83)90303-4. PMID: 6606682.
- Wilms LC, Kleinjans JC, Moonen EJ, Briedé JJ. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro. Toxicol In Vitro. 2008 Mar;22(2):301-7. doi: 10.1016/j.tiv.2007.09.002. Epub 2007 Sep 14. PMID: 17959353.
- Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997 Oct 28;119(1):99-107. doi: 10.1016/s0304-3835(97)00261-9. PMID: 18372528.
- Yu W, L Zhao. Chemiluminescence detection of reactive oxygen species generation and potential environmental applications. TrAC Trends in Analytical Chemistry. 2021;136:116197. doi: 10.1016/j.trac.2021.116197.
- Lu C, Song G, Lin J M. Reactive oxygen species and their chemiluminescence-detection methods. Trends Analyt Chem. 2006;25(10):985-995. doi:10.1016/j.trac.2006.07.007.
- Hühner J, Ingles-Prieto Á, Neusüß C, Lämmerhofer M, Janovjak H. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Electrophoresis. 2015 Feb;36(4):518-25. doi: 10.1002/elps.201400451. Epub 2015 Jan 22. PMID: 25488801.
- Woodward J R, Ikeya N. Radical pair based magnetic field effects in cells: The importance of photoexcitation conditions and single cell measurements. BioRxiv. 2022. doi:10.1101/2022.11.09.515724.
- Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J. 2006 Aug 15;91(4):1452-9. doi: 10.1529/biophysj.106.082388. Epub 2006 Jun 2. PMID: 16751234; PMCID: PMC1518628.
- Cunningham ML, Krinsky NI, Giovanazzi SM, Peak MJ. Superoxide anion is generated from cellular metabolites by solar radiation and its components. J Free Radic Biol Med. 1985;1(5-6):381-5. doi: 10.1016/0748-5514(85)90150-3. PMID: 3018063.
- Sato K, Taguchi H, Maeda T, Minami H, Asada Y, Watanabe Y, Yoshikawa K. The primary cytotoxicity in ultraviolet-a-irradiated riboflavin solution is derived from hydrogen peroxide. J Invest Dermatol. 1995 Oct;105(4):608-12. doi: 10.1111/1523-1747.ep12323724. PMID: 7561167.
- Wang Y, Ferrer-Espada R, Baglo Y, Goh XS, Held KD, Grad YH, Gu Y, Gelfand JA, Dai T. Photoinactivation of Neisseria gonorrhoeae: A Paradigm-Changing Approach for Combating Antibiotic-Resistant Gonococcal Infection. J Infect Dis. 2019 Jul 31;220(5):873-881. doi: 10.1093/infdis/jiz018. PMID: 30629196; PMCID: PMC6667797.
- Plavskii VY, Mikulich AV, Tretyakova AI, Leusenka IA, Plavskaya LG, Kazyuchits OA, Dobysh II, Krasnenkova TP. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J Photochem Photobiol B. 2018 Jun;183:172-183. doi: 10.1016/j.jphotobiol.2018.04.021. Epub 2018 Apr 16. PMID: 29715591.
- Hu J, Allen R, Rozinek S, Brancaleon L. Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochem Photobiol Sci. 2017 May 17;16(5):694-710. doi: 10.1039/c6pp00096g. PMID: 28287230.
- Tanielian C, Wolff C, Esch M. Singlet oxygen production in water: Aggregation and charge-transfer effects. J Phys Chem. 1996;100(16):6555-6560. doi: 10.1021/jp952107s.
- Nishimura T, Hara K, Honda N, Okazaki S, Hazama H, Awazu K. Determination and analysis of singlet oxygen quantum yields of talaporfin sodium, protoporphyrin IX, and lipidated protoporphyrin IX using near-infrared luminescence spectroscopy. Lasers Med Sci. 2020 Aug;35(6):1289-1297. doi: 10.1007/s10103-019-02907-0. Epub 2019 Dec 18. PMID: 31853809.
- Lambert CR, Reddi E, Spikes JD, Rodgers MA, Jori G. The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem Photobiol. 1986 Nov;44(5):595-601. doi: 10.1111/j.1751-1097.1986.tb04714.x. PMID: 3809256.
- Blum A, Grossweiner LI. Singlet oxygen generation by hematoporphyrin IX, uroporphyrin I and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes. Photochem Photobiol. 1985 Jan;41(1):27-32. doi: 10.1111/j.1751-1097.1985.tb03443.x. PMID: 3157197.
- Fernandez JM, Bilgin MD, Grossweiner LI. Singlet oxygen generation by photodynamic agents. J Photochem Photobiol B. 1997;37:131-140. doi: 10.1016/S1011-1344(96)07349-6.
- Logovinsky V, Kaposi AD, Vanderkoor JM. Fluorescence line narrowing spectroscopy of Zn porphyrins. Photochem Photobiol. 1993;57:235-241. doi: 10.1111/j.1751-1097.1993.tb02281.x.
- Morales J, Günther G, Zanocco AL, Lemp E. Singlet oxygen reactions with flavonoids. A theoretical-experimental study. PLoS One. 2012;7(7):e40548. doi: 10.1371/journal.pone.0040548. Epub 2012 Jul 10. PMID: 22802966; PMCID: PMC3393665.
- Pronin D, Krishnakumar S, Rychlik M, Wu H, Huang D. Development of a Fluorescent Probe for Measurement of Singlet Oxygen Scavenging Activity of Flavonoids. J Agric Food Chem. 2019 Sep 25;67(38):10726-10733. doi: 10.1021/acs.jafc.9b04025. Epub 2019 Sep 11. PMID: 31469953.
- Chen YT, Zheng RL, Jia ZJ, Ju Y. Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med. 1990;9(1):19-21. doi: 10.1016/0891-5849(90)90045-k. PMID: 2170243.
- Plavskii V, Mikulich A, Barulin N, Ananich T, Plavskaya L, Tretyakova A, Leusenka I. Comparative Effect of Low-intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm. Photochem Photobiol. 2020 Nov;96(6):1294-1313. doi: 10.1111/php.13315. Epub 2020 Aug 19. PMID: 32692856.
- Plavskii VY, Barulin NV, Mikulich AV, Tretyakova AI, Ananich TS, Plavskaya LG, Leusenka IA, Sobchuk AN, Sysov VA, Dudinova ON, Vodchits AI, Khodasevich IA, Orlovich VA. Effect of continuous wave, quasi-continuous wave and pulsed laser radiation on functional characteristics of fish spermatozoa. J Photochem Photobiol B. 2021 Mar;216:112112. doi: 10.1016/j.jphotobiol.2020.112112. Epub 2021 Jan 30. PMID: 33524930.
- Karu T. Photobiological fundamentals of low-power laser therapy. IEEE J Quantum Electron. 1987;23(10):1703-1717. doi: 10.1109/JQE.1987.1073236.
- Wang T, Dong J, Zhang G. Analyzing Efficacy and Safety of Anti-Fungal Blue Light Therapy via Kernel-Based Modeling the Reactive Oxygen Species Induced by Light. IEEE Trans Biomed Eng. 2022 Aug;69(8):2433-2442. doi: 10.1109/TBME.2022.3146567. Epub 2022 Jul 18. PMID: 35085070.
- Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci. 2020 Aug;35(6):1329-1339. doi: 10.1007/s10103-019-02928-9. Epub 2020 Jan 4. PMID: 31900692.
- Opländer C, Hidding S, Werners FB, Born M, Pallua N, Suschek CV. Effects of blue light irradiation on human dermal fibroblasts. J Photochem Photobiol B. 2011 May 3;103(2):118-25. doi: 10.1016/j.jphotobiol.2011.02.018. Epub 2011 Feb 26. PMID: 21421326.
- Liebmann J, Born M, Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol. 2010 Jan;130(1):259-69. doi: 10.1038/jid.2009.194. PMID: 19675580.
- Serrage HJ, Joanisse S, Cooper PR, Palin W, Hadis M, Darch O, Philp A, Milward MR. Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number. J Biophotonics. 2019 Jun;12(6):e201800411. doi: 10.1002/jbio.201800411. Epub 2019 Feb 20. PMID: 30701682; PMCID: PMC7065641.
- Serrage HJ, Cooper PR, Palin WM, Horstman P, Hadis M, Milward MR. Photobiomodulation of oral fibroblasts stimulated with periodontal pathogens. Lasers Med Sci. 2021 Dec;36(9):1957-1969. doi: 10.1007/s10103-021-03331-z. Epub 2021 May 15. PMID: 33991267; PMCID: PMC8593050.
- Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR. The UV/Visible Radiation Boundary Region (385-405 nm) Damages Skin Cells and Induces "dark" Cyclobutane Pyrimidine Dimers in Human Skin in vivo. Sci Rep. 2018 Aug 24;8(1):12722. doi: 10.1038/s41598-018-30738-6. PMID: 30143684; PMCID: PMC6109054.
- Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem. 2006 Oct;386(3):532-43. doi: 10.1007/s00216-006-0366-9. Epub 2006 May 13. PMID: 16609844.
- Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005 Dec 31;65(2-3):45-80. doi: 10.1016/j.jbbm.2005.10.003. Epub 2005 Nov 4. PMID: 16297980.
- Lee IH, Kim SH, Kang DH. Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes. Curr Res Food Sci. 2022 Dec 30;6:100428. doi: 10.1016/j.crfs.2022.100428. PMID: 36632435; PMCID: PMC9826937.
- Lagunes I, Trigos Á. Photo-oxidation of ergosterol: indirect detection of antioxidants photosensitizers or quenchers of singlet oxygen. J Photochem Photobiol B. 2015 Apr;145:30-4. doi: 10.1016/j.jphotobiol.2015.02.014. Epub 2015 Feb 27. PMID: 25756399.
- Condat M, Babinot J, Tomane S, Malval JP, Kang IK, Spillebout F, Mazeran PE, Lalevée J, Andalloussi S A, Versace DL. Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications. RSC advances. 2016;6(22):18235-18245. doi: 10.1039/C5RA25267A.
- Peskova NN, Brilkina AA, Gorokhova AA, Shilyagina NY, Kutova OM, Nerush AS, Orlova AG, Klapshina LG, Vodeneev VV, Balalaeva IV. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J Photochem Photobiol B. 2021 Jun;219:112208. doi: 10.1016/j.jphotobiol.2021.112208. Epub 2021 May 6. PMID: 33989888.
- Sencha LM, Gorokhova AA, Peskova NN, Cherkasova EI, Balalaeva IV. Dynamic study of pdt-induced oxidative stress in cancer cells embedded in 3d collagen hydrogel using genetically encoded H2O2-sensor. J Biomed Photon Eng. 2022;8(4):040305. doi: 10.18287/JBPE22.08.040305.
- Chernyak BV, Izyumov DS, Lyamzaev KG, Pashkovskaya AA, Pletjushkina OY, Antonenko YN, Sakharov DV, Wirtz KW, Skulachev VP. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):525-34. doi: 10.1016/j.bbabio.2006.02.019. Epub 2006 Apr 7. PMID: 16678116.
- Kruchenok JV, Dudinova ON, Plavskii VY. Bilirubin and blue-green light-induced damage of human erythrocytes. J Biomed Photonics Eng. 2023;9(2):020303. doi: 10.18287/JBPE23.09.020303.
- Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009 Jan 12;16(1):4. doi: 10.1186/1423-0127-16-4. PMID: 19272168; PMCID: PMC2644974.
- Karu TI. Cellular and molecular mechanisms of photobiomodulation (Low-Power Laser Therapy). IEEE Journal of Selected Topics in Quantum Electronics. 2014;20(2):143-148. doi: 10.1109/JSTQE.2013.2273411.
- Lima PLV, Pereira CV, Nissanka N, Arguello T, Gavini G, Maranduba CMDC, Diaz F, Moraes CT. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J Photochem Photobiol B. 2019 May;194:71-75. doi: 10.1016/j.jphotobiol.2019.03.015. Epub 2019 Mar 22. PMID: 30927704.
- Pope NJ, Denton ML. Differential effects of 808-nm light on electron transport chain enzymes in isolated mitochondria: Implications for photobiomodulation initiation. Mitochondrion. 2023 Jan;68:15-24. doi: 10.1016/j.mito.2022.11.002. Epub 2022 Nov 9. PMID: 36371074.