Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Hypoxic Epicardium Contribution to Myocardial Repair

Medicine Group    Start Submission

Dergilev Konstantin V, Menshikov Mikhail Yu* and Parfyonova Yelena V

Volume4-Issue11
Dates: Received: 2023-10-30 | Accepted: 2023-11-12 | Published: 2023-11-14
Pages: 1552-1556

Abstract

Epicardium, the outer epithelial layer of the heart forming from extracardiac primordium, plays a fundamental role in myocardial embryogenesis by generating epicardial-derived cells (cardiac fibroblasts, mesenchymal cells, vascular smooth muscle cells). In the adult heart, epicardium occurs as a mesothelial layer, which, in injured heart, recalls its “embryonic program” and transforms into mesenchymal cells contributing, by such a way, to myocardial reparation. This process is facilitated by hypoxic conditions arising during injury. In general, regulation of this process may be a potential methodology for treatment of cardiovascular diseases.

FullText HTML FullText PDF DOI: 10.37871/jbres1829


Certificate of Publication




Copyright

© 2023 Dergilev KV, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Dergilev KV, Menshikov MY, Parfyonova YV. Hypoxic Epicardium Contribution to Myocardial Repair. J Biomed Res Environ Sci. 2023 Oct 14; 4(11): 1552-1556. doi: 10.37871/jbres1829, Article ID: JBRES1829, Available at: https://www.jelsciences. com/articles/jbres1829.pdf


Subject area(s)

References


  1. Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015 Apr 14;65(14):1454-71. doi: 10.1016/j.jacc.2015.02.032. PMID: 25857912.
  2. Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017 Mar 14;38(11):774-784. doi: 10.1093/eurheartj/ehw224. PMID: 27354052.
  3. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998 Jun 1;82(10):1043-52. doi: 10.1161/01.res.82.10.1043. PMID: 9622157.
  4. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008 Jul 3;454(7200):104-8. doi: 10.1038/nature06969. Epub 2008 May 14. PMID: 18480752; PMCID: PMC5540369.
  5. Marín-Juez R, El-Sammak H, Helker CSM, Kamezaki A, Mullapuli ST, Bibli SI, Foglia MJ, Fleming I, Poss KD, Stainier DYR. Coronary Revascularization During Heart Regeneration Is Regulated by Epicardial and Endocardial Cues and Forms a Scaffold for Cardiomyocyte Repopulation. Dev Cell. 2019 Nov 18;51(4):503-515.e4. doi: 10.1016/j.devcel.2019.10.019. PMID: 31743664; PMCID: PMC6982407.
  6. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008 Jul 3;454(7200):109-13. doi: 10.1038/nature07060. Epub 2008 Jun 22. PMID: 18568026; PMCID: PMC2574791.
  7. Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules. 2020 Mar 5;10(3):404. doi: 10.3390/biom10030404. PMID: 32150964; PMCID: PMC7175296.
  8. Blom JN, Feng Q. Cardiac repair by epicardial EMT: Current targets and a potential role for the primary cilium. Pharmacol Ther. 2018 Jun;186:114-129. doi: 10.1016/j.pharmthera.2018.01.002. Epub 2018 Jan 17. PMID: 29352858.
  9. Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012 Jan 18;31(2):429-42. doi: 10.1038/emboj.2011.418. Epub 2011 Nov 15. PMID: 22085926; PMCID: PMC3261567.
  10. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96. doi: 10.1038/nrm3758. PMID: 24556840; PMCID: PMC4240281.
  11. Braitsch CM, Kanisicak O, van Berlo JH, Molkentin JD, Yutzey KE. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol. 2013 Dec;65:108-19. doi: 10.1016/j.yjmcc.2013.10.005. Epub 2013 Oct 17. PMID: 24140724; PMCID: PMC3848425.
  12. Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial Epithelial-to-Mesenchymal Transition in Heart Development and Disease. J Clin Med. 2016 Feb 19;5(2):27. doi: 10.3390/jcm5020027. PMID: 26907357; PMCID: PMC4773783.
  13. Smits AM, Dronkers E, Goumans MJ. The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacol Res. 2018 Jan;127:129-140. doi: 10.1016/j.phrs.2017.07.020. Epub 2017 Jul 24. PMID: 28751220.
  14. Gambardella L, McManus SA, Moignard V, Sebukhan D, Delaune A, Andrews S, Bernard WG, Morrison MA, Riley PR, Göttgens B, Gambardella Le Novère N, Sinha S. BNC1 regulates cell heterogeneity in human pluripotent stem cell-derived epicardium. Development. 2019 Dec 13;146(24):dev174441. doi: 10.1242/dev.174441. PMID: 31767620; PMCID: PMC6955213.
  15. Hesse J, Owenier C, Lautwein T, Zalfen R, Weber JF, Ding Z, Alter C, Lang A, Grandoch M, Gerdes N, Fischer JW, Klau GW, Dieterich C, Köhrer K, Schrader J. Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart. Elife. 2021 Jun 21;10:e65921. doi: 10.7554/eLife.65921. PMID: 34152268; PMCID: PMC8216715.
  16. Kimura W, Sadek HA. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther. 2012 Dec;2(4):278-89. doi: 10.3978/j.issn.2223-3652.2012.12.02. PMID: 24282728; PMCID: PMC3839158.
  17. Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, DeBerardinis RJ, Sadek HA. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res. 2012 Oct;5(5):654-65. doi: 10.1007/s12265-012-9366-7. Epub 2012 May 8. Erratum in: J Cardiovasc Transl Res. 2012 Oct;5(5):666. PMID: 22566269.
  18. Dergilev KV, Tsokolaeva ZI, Vasilets YD, Beloglazova IB, Kulbitsky BN, Parfyonova YV. Hypoxia - as a Possible Regulator of the Activity of Epicardial Mesothelial Cells After Myocardial Infarction. Kardiologiia. 2021 Jul 1;61(6):59-68. Russian, English. doi: 10.18087/cardio.2021.6.n1476. PMID: 34311689.
  19. Sattiraju A, Kang S, Giotti B, Chen Z, Marallano VJ, Brusco C, Ramakrishnan A, Shen L, Tsankov AM, Hambardzumyan D, Friedel RH, Zou H. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity. 2023 Aug 8;56(8):1825-1843.e6. doi: 10.1016/j.immuni.2023.06.017. Epub 2023 Jul 13. PMID: 37451265; PMCID: PMC10527169.
  20. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010 Sep 3;7(3):380-90. doi: 10.1016/j.stem.2010.07.011. PMID: 20804973; PMCID: PMC4159713.
  21. Sayed A, Turoczi S, Soares-da-Silva F, Marazzi G, Hulot JS, Sassoon D, Valente M. Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium. Sci Rep. 2022 Jun 3;12(1):9250. doi: 10.1038/s41598-022-13107-2. PMID: 35661120; PMCID: PMC9166725.
  22. Tao J, Doughman Y, Yang K, Ramirez-Bergeron D, Watanabe M. Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Dev Biol. 2013 Apr 15;376(2):136-49. doi: 10.1016/j.ydbio.2013.01.026. Epub 2013 Feb 4. PMID: 23384563; PMCID: PMC3602346.
  23. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001 Apr 20;292(5516):468-72. doi: 10.1126/science.1059796. Epub 2001 Apr 5. PMID: 11292861.
  24. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996 Dec 20;271(51):32529-37. doi: 10.1074/jbc.271.51.32529. PMID: 8955077.
  25. Zheng F, Jang WC, Fung FK, Lo AC, Wong IY. Up-Regulation of ENO1 by HIF-1α in Retinal Pigment Epithelial Cells after Hypoxic Challenge Is Not Involved in the Regulation of VEGF Secretion. PLoS One. 2016 Feb 16;11(2):e0147961. doi: 10.1371/journal.pone.0147961. PMID: 26882120; PMCID: PMC4755565.
  26. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006 Mar;3(3):177-85. doi: 10.1016/j.cmet.2006.02.002. PMID: 16517405.
  27. Higashimura Y, Nakajima Y, Yamaji R, Harada N, Shibasaki F, Nakano Y, Inui H. Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys. 2011 May 1;509(1):1-8. doi: 10.1016/j.abb.2011.02.011. Epub 2011 Feb 19. PMID: 21338575.
  28. Camacho-Jiménez L, Leyva-Carrillo L, Peregrino-Uriarte AB, Duarte-Gutiérrez JL, Tresguerres M, Yepiz-Plascencia G. Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol. 2019 Sep;235:56-65. doi: 10.1016/j.cbpa.2019.05.006. Epub 2019 May 14. PMID: 31100464.
  29. Cota-Ruiz K, Leyva-Carrillo L, Peregrino-Uriarte AB, Valenzuela-Soto EM, Gollas-Galván T, Gómez-Jiménez S, Hernández J, Yepiz-Plascencia G. Role of HIF-1 on phosphofructokinase and fructose 1, 6-bisphosphatase expression during hypoxia in the white shrimp Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol. 2016 Aug;198:1-7. doi: 10.1016/j.cbpa.2016.03.015. Epub 2016 Mar 29. PMID: 27032338.
  30. Li J, Fu X, Zhang D, Guo D, Xu S, Wei J, Xie J, Zhou X. Co-culture with osteoblasts up-regulates glycolysis of chondrocytes through MAPK/HIF-1 pathway. Tissue Cell. 2022 Oct;78:101892. doi: 10.1016/j.tice.2022.101892. Epub 2022 Aug 8. PMID: 35988475.
  31. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond). 2014 Feb 12;11(1):10. doi: 10.1186/1743-7075-11-10. PMID: 24520982; PMCID: PMC3925357.
  32. Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S, Liu L, Du R, Xia L, He L, Fan D. Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 2009 Jun;75(12):1278-1287. doi: 10.1038/ki.2009.62. Epub 2009 Mar 11. PMID: 19279556.
  33. Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol. 2013 May 27;201(5):759-76. doi: 10.1083/jcb.201212100. PMID: 23712262; PMCID: PMC3664719.
  34. Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY, Yu PW. HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget. 2017 Feb 7;8(6):9535-9545. doi: 10.18632/oncotarget.14484. PMID: 28076840; PMCID: PMC5354751.
  35. Liu K, Tang Z, Huang A, Chen P, Liu P, Yang J, Lu W, Liao J, Sun Y, Wen S, Hu Y, Huang P. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int J Oncol. 2017 Jan;50(1):252-262. doi: 10.3892/ijo.2016.3774. Epub 2016 Nov 18. PMID: 27878251
  36. Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, Yamamoto H, Doki Y, Mori M, Ishii H. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15526-31. doi: 10.1073/pnas.1407717111. Epub 2014 Oct 13. PMID: 25313085; PMCID: PMC4217454.
  37. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003 Mar 7;112(5):645-57. doi: 10.1016/s0092-8674(03)00154-5. Erratum in: Cell. 2003 May 2;113(3):419. PMID: 12628185; PMCID: PMC4480774.
  38. Stothers CL, Luan L, Fensterheim BA, Bohannon JK. Hypoxia-inducible factor-1α regulation of myeloid cells. J Mol Med (Berl). 2018 Dec;96(12):1293-1306. doi: 10.1007/s00109-018-1710-1. Epub 2018 Nov 1. PMID: 30386909; PMCID: PMC6292431.
  39. Mawambo G, Oubaha M, Ichiyama Y, Blot G, Crespo-Garcia S, Dejda A, Binet F, Diaz-Marin R, Sawchyn C, Sergeev M, Juneau R, Kaufman RJ, Affar EB, Mallette FA, Wilson AM, Sapieha P. HIF1α-dependent hypoxia response in myeloid cells requires IRE1α. J Neuroinflammation. 2023 Jun 21;20(1):145. doi: 10.1186/s12974-023-02793-y. PMID: 37344842; PMCID: PMC10286485.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search