Covid-19 Research

Mini Review

OCLC Number/Unique Identifier:

Effect of Microwave Treatment on Strength and Permeability of Wood: A Snapshot Review

Environmental Sciences    Start Submission

Rohit Sharma* and Rakesh Kumar

Volume4-Issue10
Dates: Received: 2023-11-11 | Accepted: 2023-10-29 | Published: 2023-10-31
Pages: 1497-1506

Abstract

Microwave treatment is a promising technique for modifying the properties of wood. It has gained popularity as an alternative method to conventional treatments for improving the properties of wood. Microwave drying has shown that it reduces the drying stresses and improve the quality of wood compared to traditional drying methods. This efficient heating reduces the risk of deformation, cracking, and other defects that can occur with prolonged exposure to high temperatures during traditional drying and also helps in increasing the permeability of wood. This snapshot review provides an overview of the effect of microwave treatment on the strength properties and permeability of wood with variations in parameters such as the frequency, power, and treatment time along with the potential benefits and drawbacks of this method. Overall, the review indicate that microwave treatment is an effective method for modifying the properties of wood and has the potential to improve its performance in various applications.

FullText HTML FullText PDF DOI: 10.37871/jbres1823


Certificate of Publication




Copyright

© 2023 Sharma R, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Sharma R, Kumar R. Effect of Microwave Treatment on Strength and Permeability of Wood: A Snapshot Review. J Biomed Res Environ Sci. 2023 Oct 31; 4(10): 1497-1506. doi: 10.37871/jbres1823, Article ID: JBRES1823, Available at: https://www. jelsciences.com/articles/jbres1823.pdf


Subject area(s)

References


  1. Scheffer TC, Morrell JJ. Natural durability of wood: A worldwide checklist of species. Forest Research Laboratory, Oregon State University. Research Contribution 22. p.58.
  2. Taylor AM, Gartner BL, Morrell JJ. Heartwood formation and natural durability: A review. Wood and Fiber Science. 2002;34(4):587-611.
  3. Shupe TF, Lebow ST, Ring DR. Causes and control of wood decay, degradation & stain. Louisiana State University Agricultural Center, Louisiana Cooperative Extension Service. 2008.
  4. Perré P. Fundamentals of wood drying, European COST, AR BO. LOR: Nancy, France. 2007.
  5. Desch HE, Dinwoodie JM. Seasoning of Wood. In: Timber structure, properties, conversion and use. Palgrave, London; 1996. p.144-158.
  6. Jones PL. High frequency dielectric heating in paper making. Drying Technology. 1986;4(2):217-244. doi: 10.1080/07373938608916325.
  7. Mijović J, Wijaya J. Review of cure of polymers and composites by microwave energy. Polymer Composites. 1990;11(3):184-191. doi: 10.1002/pc.750110307.
  8. Grant E, Halstead BJ. Dielectric parameters relevant to microwave dielectric heating. Chemical society reviews. 1998;27(3):213-224. doi: 10.1039/A827213Z.
  9. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM. Microwave heating processes involving carbon materials. Fuel Processing Technology. 2010;91(1):1-8. doi: 10.1016/j.fuproc.2009.08.021.
  10. El Khaled D, Novas N, Gazquez JA, Manzano-Agugliaro F. Microwave dielectric heating: Applications on metals processing. Renewable and Sustainable Energy Reviews. 2018;82:2880-2892. doi: 10.1016/j.rser.2017.10.043.
  11. Sharma R, Kumar R, Ray S. Dielectric heating: An eco-friendly alternative for drying of wood. Plant. 2022;4:933-940.
  12. Ramaswamy H, Tang J. Microwave and radio frequency heating. Food Science and Technology International. 2008;14(5):423-427. doi: 10.1177/1082013208100534.
  13. He Q, Wang X. Drying stress relaxation of wood subjected to microwave radiation. BioResources. 2015;10(3): 4441-4452.
  14. Vermaas HF. High frequency heating of wood: Part 1: A review of general principles. South African Forestry Journal. 1972;81(1):13-16. doi: 10.1080/00382167.1972.9629268.
  15. Resch H. Drying of incense cedar pencil slats by microwave power. Journal of Microwave Power. 1967;2(2):45-49. doi: 10.1080/00222739.1967.11688644.
  16. Gezici-Koç Ö, Erich SJ, Huinink HP, Van der Ven LG, Adan OC. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose. 2017;24(2):535-553. doi: 10.1007/s10570-016-1173-x.
  17. Mantanis GI, Young RA, Rowell RM. Swelling of wood. Wood Science and Technology. 1994;28(2):119-134. doi: 10.1007/BF00192691.
  18. Brischke C, Rapp AO. Dose-response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Science and Technology. 2008;42:507-518. doi: 10.1007/s00226-008-0191-8.
  19. Johansson P, Bok G, Ekstrand-Tobin A. The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions. Building and Environment. 2013;65:178-184. doi: 10.1016/j.buildenv.2013.04.004.
  20. Evans PD, Matsunaga H, Preston AF, Kewish CM. Wood protection for carbon sequestration: A review of existing approaches and future directions. Current Forestry Reports. 2022;8(2):181-198. doi: 10.1007/s40725-022-00166-x.
  21. Milton FT. The preservation of wood. Minnesota Extension Service; 1995. p.110.
  22. Ganguly S, Balzano A, Petrič M, Kržišnik D, Tripathi S, Žigon J, Merela M. Effects of different energy intensities of microwave treatment on heartwood and sapwood microstructures in Norway spruce. Forests. 2021;12(5):598. doi: 10.3390/f12050598.
  23. Ganguly S, Tripathi S. Study on effect of microwave treatment on wood permeability and preservative retention in imported timber. J Agroecology Nat Res Management. 2018;5(1):34-40.
  24. Terziev N, Daniel G, Torgovnikov G, Vinden P. Effect of microwave treatment on the wood structure of Norway spruce and Radiata Pine. BioResources. 2020;15(3):5616-5626.
  25. Mascarenhas FJR, Dias AMPG, Christoforo AL. State of the art of microwave treatment of wood: Literature review. Forests. 2021;12:745. doi: 10.3390/f12060745.
  26. Hansson L. Microwave treatment of wood (Doctoral dissertation, Luleå tekniska universitet); 2007.
  27. Resch H. High-frequency electric current for drying of wood-historical perspectives. Maderas. Ciencia y tecnología. 2006;8(2):67-82. doi: 10.4067/S0718-221X2006000200001.
  28. Dominik H, PETR P, Jakub D, Jan B. Permeability and mechanical behavior of microwave pre-treated Norway spruce ripe wood. Wood Research. 2021;66(4):569-581. doi: 10.37763/wr.1336-4561/66.4.569581.
  29. Hansson L, Antti AL. The effect of microwave drying on Norway spruce woods strength: A comparison with conventional drying. Journal of Materials Processing Technology. 2003;141(1):41-50. doi: 10.1016/S0924-0136(02)01102-0.
  30. Sethy AK, Vinden P, Torgovnikov G, Militz H, Mai C, Kloeser L, Przewloka S. Catalytic acetylation of Pinus radiata (D. Don) with limited supply of acetic anhydride using conventional and microwave heating. Journal of Wood Chemistry and Technology. 2012;32(1):1-11. doi: 10.1080/02773813.2011.573121.
  31. Balboni BM, Ozarska B, Garcia JN, Torgovnikov G. Microwave treatment of Eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood properties. European Journal of Wood and Wood Products. 2018;76(3):861-870. doi: 10.1007/s00107-017-1260-1.
  32. Torgovnikov G, Vinden P. Microwave wood modification technology and its applications. Forest Products Journal. 2010;60(2):173-182. doi: 10.13073/0015-7473-60.2.173.
  33. Afzal MT, Thomson FC. Moisture equalization of Kiln-wet Lumber using microwave heating. 2004 ASAE. 2004. doi: 10.13031/2013.16964.
  34. Oloyede A, Groombridge P. The influence of microwave heating on the mechanical properties of wood. Journal of Materials Processing Technology. 2000;100(1-3):67-73. doi: 10.1016/S0924-0136(99)00454-9.
  35. Li X, Zhang B, Li W, Li Y. Research on the effect of microwave pretreatment on moisture diffusion coefficient of wood. Wood Science and Technology. 2005;39(7):521-528. doi: 10.1007/s00226-005-0007-z.
  36. Kollmann FF, Kuenzi EW, Stamm AJ. Principles of wood science and technology: II wood based materials. Springer Science & Business Media. 2012. doi: 10.1007/978-3-642-87931-9.
  37. Abubakari A. Radio frequency heating pre-treatment of sub-alpine fir to improve kiln drying. 2010.
  38. Vinden P, Romerio F, Torgovnikov G. Method for increasing permeability of wood. 2003.
  39. Sandoval-Torres S, Jomaa W, Marc F, Puiggali JR. Causes of color changes in wood during drying. Forestry Studies in China. 2010;12(4):167-175. doi: 10.1007/s11632-010-0404-8.
  40. Aitken L. Factors affecting microwave modified wood permeability and strength. 2013.
  41. Anderson AB, Fearing WB, Wilke CR. Solvent drying of California redwood. Forest Products Journal. 1962;12(10):493-496.
  42. Aggarwal PK, Chauhan SS. Microwave drying of planks of Grevillea robusta A. Cunn. ex R. Journal of the Indian Academy of Wood Science. 2011;8(2):84-88. doi: 10.1007/s13196-012-0050-y.
  43. Brodie G. Microwave treatment accelerates solar timber drying. Transactions of the ASABE. 2007;50(2):389-396.
  44. Kol HŞ, Çayır B. Increasing the impregnability of oriental spruce wood via microwave pretreatment. BioResources. 2021;16(2): 2513-2523.
  45. Tascioglu C, Cooper P, Ung T. Effects of fixation temperature and environment on copper speciation in ACQ treated red pine. Holzforschung. 2008;62:289-293. doi: 10.1515/HF.2008.035.
  46. Poonia PK, Tripathi S, Sihag K, Kumar S. Effect of microwave treatment on air permeability and preservative impregnation of Eucalyptus tereticornis wood. Journal of the Indian Academy of Wood Science. 2015;12(2):89-93.
  47. Dashti H, Shahverdi M, Taghiyari HR, Salehpur S, Heshmati S. Effects of steaming and microwave pretreatments on mass transfer characteristics of Aleppe oak (Quercus infectoria). BioResources. 2012;7(3):3262-3273.
  48. Vinden P, Torgovnikov G, Hann J. Microwave modification of radiata pine railway sleepers for preservative treatment. European Journal of Wood and Wood Products. 2011;69(2):271-279. doi: 10.1007/s00107-010-0428-8.
  49. Cirule D, Kurnosova N, Vervkins A, Kuka E, Antons A, Andersone I, Andersons B. Penetration of wood preservatives into thermally modified birch and pine wood. Pro Ligno. 2018;14(4):23-30.
  50. Poonia PK, Hom SK, Sihag K, Tripathi S. Effect of microwave treatment on longitudinal air permeability and preservative uptake characteristics of chir pine wood. Maderas. Ciencia Y Tecnología. 2016;18(1):125-132. doi: 10.4067/S0718-221X2016005000013.
  51. Poonia PK, Tripathi S. Effect of microwave heating on pH and durability of Eucalyptus tereticornis wood. Journal of Tropical Forest Science. 2017;389-394. doi: 10.26525/jtfs2017.29.3.389394.
  52. Samani A, Ganguly S, Kanyal R, Tripathi S. Effect of microwave pre-treatment on preservative retention and treatability of melia composite wood. Journal of Forest Science. 2019;65(10):391-396. doi: 10.17221/39/2019-JFS.
  53. Chang HT, Chang ST. Improvements in dimensional stability and lightfastness of wood by butyrylation using microwave heating. Journal of Wood Science. 2003;49(5):455-460. doi: 10.1007/s10086-002-0504-8.
  54. Avramidis S, Ruddick JN. CCA accelerated fixation by dielectric heating. Forest Products Journal. 1996;46(7/8):52-55.
  55. Yu LL, Gao W, Cao JZ, Tang ZZ. Effects of microwave post-treatments on leaching resistance of ACQ-D treated Chinese fir. Forestry Studies in China. 2010;12(1):1-8. doi: 10.1007/s11632-010-0008-3.
  56. Mascarenhas FJR, Pereira Geraldes Dias AM, Christoforo AL, Dos Santos Simões RM, Palos Cunha AE. Effect of microwave treatment on drying and water impregnability of Pinus pinaster and eucalyptus globulus. Maderas. Ciencia Y Tecnología. 2023;25. doi: 10.4067/s0718-221x2023000100406.
  57. Poonia PK, Tripathi S. Effect of microwave treatment on permeability of Populus deltoides bartr. Wood. Indian Forester. 2015;141(5):528-532. doi: 10.36808/if/2015/v141i5/70232.
  58. Ramezanpour M, Tarmian A, Taghiyari HR. Improving impregnation properties of fire wood to Acid Copper Chromate (ACC) with microwave pre-treatment. iForest-Biogeosciences and Forestry. 2015;8(1):89. doi: 10.3832/ifor1119-007.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search