Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Green Synthesis of Nickel Nanoparticles using Plant Extract

Medicine Group    Start Submission

Kamilya Khalugarova*, Yuliya Spivak, Vyacheslav Moshnikov, Alexey Komolov and Valeriy Kondratev

Volume4-Issue7
Dates: Received: 2023-06-21 | Accepted: 2023-07-08 | Published: 2023-07-10
Pages: 1136-1139

Abstract

The use of the green synthesis method helps to reduce the toxicity of nanomaterials both when they are obtained and when they are used in various areas. Therefore, in recent years, in order to ensure the sustainability of ecosystems, special attention has been paid to ecological approaches using simple and safe reaction conditions and harmless precursors. This article presents the results of SEM and XPS studies of nickel nanoparticles obtained by green synthesis using the extract of the Fumaria officinalis.

FullText HTML FullText PDF DOI: 10.37871/jbres1777


Certificate of Publication




Copyright

© 2023 Khalugarova K, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Khalugarova K, Spivak Y, Moshnikov V, Komolov A, Kondratev V. Green Synthesis of Nickel Nanoparticles using Plant Extract. 2023 July 10; 4(7): 1136-1139. doi: 10.37871/jbres1777, Article ID: JBRES1777, Available at: https://www.jelsciences.com/articles/jbres1777.pdf


Subject area(s)

References


  1. Kharissova OV, et al. Greener synthesis of chemical compounds and materials. Royal Society open science. 2019;6:11. doi: 10.1098/rsos.191378.
  2. Ying S, et al. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation. 2022;26:102336. doi: 10.1016/j.eti.2022.102336.
  3. Ijaz I, et al. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews. 2020;13:223-245. doi: 10.1080/17518253.2020.1802517
  4. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018 Oct 30;16(1):84. doi: 10.1186/s12951-018-0408-4. PMID: 30373622; PMCID: PMC6206834.
  5. Sun Q, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and surfaces A: Physicochemical and Engineering aspects. 2014;444:226-231. doi: 10.1016/j.colsurfa.2013.12.065.
  6. Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;134:310-315. doi: 10.1016/j.saa.2014.06.046
  7. Fukushit K, Sato T. Using a surface complexation model to predict the nature and stability of nanoparticles. Environ Sci Technol. 2005 Mar 1;39(5):1250-6. doi: 10.1021/es0491984. PMID: 15787363.
  8. Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 2014 Feb;204:15-34. doi: 10.1016/j.cis.2013.12.002. Epub 2013 Dec 12. PMID: 24406050.
  9. Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012 Jul 3;46(13):6900-14. doi: 10.1021/es2037405. Epub 2012 Feb 29. PMID: 22339502.
  10. Selvanathan V, et al. Phytochemical-assisted green synthesis of nickel oxide nanoparticles for application as electrocatalysts in oxygen evolution reaction. Catalysts. 2021;11:12. doi: 10.3390/catal11121523.
  11. Vasudeo K, Pramod K. Biosynthesis of nickel nanoparticles using leaf extract of coriander. Biotechnol Ind J. 2016;12:1-6.
  12. Recep TAŞ, Köroğlu E, Celebioglu HU. Green Synthesis of Nickel Nanoparticles Using Peumus Boldus Koch. Extract and Antibacterial Activity. International Journal of Innovative Engineering Applications. 2021;5:152-155. doi: 10.46460/ijiea.929625.
  13. Kiran S, et al. Green synthesis of nickel nanoparticles using fruit peels of citrus paradise for remediation of Congo red dye. Journal of the Mexican Chemical Society. 2021;65:507-515. doi: 10.29356/jmcs.v65i4.1572.
  14. Gautam YK, et al. Applications of green nanomaterials in coatings. Green Nanomaterials for Industrial Applications. Elsevier. 2022;107-152. doi: 10.1016/B978-0-12-823296-5.00014-9.
  15. Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials (Basel). 2022 Feb 17;12(4):673. doi: 10.3390/nano12040673. PMID: 35215000; PMCID: PMC8878231.
  16. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016 Apr;38(4):545-60. doi: 10.1007/s10529-015-2026-7. Epub 2015 Dec 31. PMID: 26721237.
  17. Samuel MS, et al. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts. 2022;12:459. doi: 10.3390/catal12050459.
  18. Soboleva E, et al. Properties of porous silicon precipitated with nickel for gas sensors. Sensor Letters. 2018;16:672-676. doi: 10.1166/sl.2018.4015.
  19. Bobkov A, Luchinin V, Moshnikov V, Nalimova S, Spivak Y. Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on por-Si, por-Si Incorporated by Ni and Metal Oxides for Gas Sensors. Sensors (Basel). 2022 Feb 16;22(4):1530. doi: 10.3390/s22041530. PMID: 35214428; PMCID: PMC8877289.
  20. Al-Snafi AE. Constituents and pharmacology of Fumaria officinalis-A review. IOSR Journal of Pharmacy. 2020;10:17-25.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search