Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

A New Model of Consciousness as a Quantum Field

General Science    Start Submission

Antonio Manzalini*

Volume3-Issue9
Dates: Received: 2022-09-15 | Accepted: 2022-09-30 | Published: 2022-09-30
Pages: 1139-1145

Abstract

The article proposes a new model of consciousness of living organisms, based on an extension of the de Broglie-Bohm theory, which is also meeting the principles of the Quantum Field Theory. In particular, the article starts from the consideration that living organisms are similar to open systems, operating far from the thermodynamic equilibrium: in fact, they are subjected to continuous internal flows and exchanges of energy, matter and information with the surrounding environments. On a deeper physical level, however, these exchanges are mediated by quantum wave oscillations and interactions, so that it is argued that living organisms are even operating far from quantum equilibrium. Therefore, leveraging on a prior art arguing that quantum theory might be a special case of a much wider physics, where systems are far from quantum equilibrium, the article proposes a wider perspective of the de Broglie-Bohm theory for modeling consciousness. Consciousness is modelled as a special quantum wave field whose associated potential is elaborated as active information by living organism and accounts, with different complexity levels, for consciousness phenomena in life. Moreover, the article proposes that the form or curvature of the consciousness wave field can be expressed in terms of Nambu Goldstone bosons condensations (as described in Quantum Field Theory) associated to symmetry breaking phenomena in living organisms.

FullText HTML FullText PDF DOI: 10.37871/jbres1568


Certificate of Publication




Copyright

© 2022 Manzalini A. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Manzalini A. A New Model of Consciousness as a Quantum Field. 2022 Sep 30; 3(9): 1139-1145. doi: 10.37871/jbres1568, Article ID: JBRES1568, Available at: https://www.jelsciences.com/articles/jbres1568.pdf


Subject area(s)

References


  1. Umezawa H, Yamanaka Y. Micro, macro and thermal concepts in quantum field theory. Advances in Physics. 1988;37(5):531-557. doi: 10.1080/00018738800101429.
  2. Blasone M, Jizba P, Vitiello G. Quantum Field Theory and its Macroscopic Manifestations. London: Imperial College Press; 2011.
  3. Lloyd S. Quantum coherence in biological systems. J Phys Conf Ser. 2011;302:012037. doi: 10.1088/1742-6596/302/1/012037.
  4. Frohlich H. Long-range coherence and energy storage in biological systems. Int J Quantum Chem. 1968;2:641-649. doi: 10.1002/qua.560020505.
  5. Del Giudice E, Doglia S, Milani M, Vitiello G. Spontaneous symmetry breakdown and boson condensation in biology. Physics Letters A. 1983;95A-9:508-510. doi: 10.1016/0375-9601(83)90509-1.
  6. Del Giudice E, Doglia S, Milani M, Vitiello G. A quantum field theoretical approach to the collective behavior of biological systems. Nuclear Physics B. 1985;251(FS 13):375-400. doi: 10.1016/0550-3213(85)90267-6.
  7. Del Giudice E, Doglia S, Milani M, Vitiello G. Electromagnetic field and spontaneous symmetry breakdown in biological matter. Nucl Phys B. 1986;275:185-199. doi: 10.1016/0550-3213(86)90595-X.
  8. Del Giudice E, Preparata G, Vitiello G. Water as a free electric dipole laser. Phys Rev Lett. 1988 Aug 29;61(9):1085-1088. doi: 10.1103/PhysRevLett.61.1085. PMID: 10039515.
  9. Ball P. Physics of life: The dawn of quantum biology. Nature. 2011 Jun 15;474(7351):272-4. doi: 10.1038/474272a. PMID: 21677723.
  10. Salari V, Tuszynski J, Rahnama M, Bernroider G. Plausibility of quantum coherent states in biological systems. Journal of Physics: Conference Series. 2011;306. doi: 10.1088/1742-6596/306/1/012075.
  11. Al-Khalili J. McFadden J. Life on the edge: The coming age of quantum biology. New York: Crown; 2015.
  12. Valentini A. Beyond the quantum. Physics World. 2009;22(11):32. doi: 10.1088/2058-7058/22/11/36.
  13. Hiley BJ, Pylkkanen P. Can mind affect matter via active information? Mind and Matter. 2005;3(2):8-27.
  14. Eccles JC. Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc R Soc Lond B Biol Sci. 1986 May 22;227(1249):411-28. doi: 10.1098/rspb.1986.0031. PMID: 2873576.
  15. Margenau H. The Miracle of Existence. New Science Library; 1984.
  16. Antony V. Hidden Variables in Modern Cosmology. Youtube.com. Philosophy of Cosmology. 2013.
  17. Bohm D, Hiley BJ. The undivided universe: An ontological interpretation of quantum theory. London and New York: Routledge; 1993.
  18. Aharonov Y, Bohm D. Significance of electromagnetic potentials in the quantum theory. Physical Review. 1959;115(3):485. doi: 10.1103/PhysRev.115.485.
  19. Brizhik L, Del Giudice E, Jørgensen SE, Marchettini N, Tiezzi E. The role of electromagnetic potentials in the evolutionary dynamics of ecosystems. Ecological Modelling. 2009;220(16): 1865-1869. doi: 10.1016/j.ecolmodel.2009.04.017.
  20. Trukhan EM, Anosov VN. [Vector potential as a channel of informational effect on living objects]. Biofizika. 2007 Mar-Apr;52(2):376-81. Russian. PMID: 17477070.
  21. Riggs PJ. Reflections on the de Broglie–Bohm Quantum Potential. Erkenntnis. 2008;68(1): 21-39. doi: 10.1007/s10670-007-9054-1.
  22. Peskin ME. An introduction to quantum field theory. CRC Press; 2018.
  23. Vitiello G. Dissipation and memory capacity in the quantum brain model. Int J Mod Phys. 1995;B9:973-989.
  24. Ricciardi LM, Umezawa H. Brain physics and many-body problems. Kibernetik. 1967;4:44-48.
  25. O'Raifeartaigh L, Straumann N. Gauge theory: Historical origins and some modern developments. Reviews of Modern Physics. 2000;72(1):1. doi: 10.1103/RevModPhys.72.1.
  26. Freeman WJ, Vitiello G. The dissipative quantum model of brain and laboratory observations. In Physics of Emergence and Organization. 2008;233-251. doi: 10.1142/9789812779953_0009.
  27. Freeman WJ, Vitiello G. Vortices in brain waves. International Journal of Modern Physics B. 2010;24(17):3269-3295. doi: 10.1142/S0217979210056025.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search