Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Vernonia amygdalina Delile Induces Apoptotic Effects of PC3 Cells: Implication in the Prevention of Prostate Cancer

Medicine Group    Start Submission

Clement G Yedjou*, William Johnson, Solange S Tchounwou, Shaloam Dasari, Sylvianne Njiki and Paul B Tchounwou

Volume3-Issue9
Dates: Received: 2022-09-07 | Accepted: 2022-09-28 | Published: 2022-09-30
Pages: 1118-1124

Abstract

Background: Prostate Cancer (PCa) is one of the common cancers in males and its incidence keeps increasing globally. Approximately 81% of PCa is diagnosed during the early stage of the disease. The treatment options for prostate care include surgery, radiotherapy, and chemotherapy, but these treatments often have side effects that may lead to issues such as impotence or decreased bowel function. Our central goal is to test the apoptotic effects of Vernonia amygdalina Delile (an edible medicinal plant that is relatively inexpensive, nontoxic, and virtually without side effects) for the prevention of PCa using human adenocarcinoma (PC-3) cells as a test model.

Methods: To address our central goal, PC-3 cells were treated with Vernonia amygdalina Delile (VAD). Cell cycle arrest and cell apoptosis were evaluated by Flow Cytometry assessment. Nucleosomal DNA fragmentation was detected by agarose gel electrophoresis.

Results: Flow cytometry data showed that VAD induced cell cycle arrest at the G0/G1 checkpoint and significantly upregulated caspase-3 in treated cells compared to the control cells. Agarose gel electrophoresis resulted in the formation of DNA ladders in VAD-treated cells.

Conclusion: These results suggest that inhibition of cancer cell growth, induction of cell cycle arrest, and apoptosis through caspase-3 activation and nucleosomal DNA fragmentation are involved in the therapeutic mechanisms of VAD as a candidate drug towards the prevention and/or treatment of PCa.

FullText HTML FullText PDF DOI: 10.37871/jbres1564


Certificate of Publication




Copyright

© 2022 Yedjou CG, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Yedjou CG, Johnson W, Tchounwou SS, Dasari S, Njiki S, Tchounwou PB. Vernonia amygdalina Delile Induces Apoptotic Effects of PC3 Cells: Implication in the Prevention of Prostate Cancer. J Biomed Res Environ Sci. 2022 Sep 30; 3(9): 1118-1124. doi: 10.37871/jbres1564, Article ID: JBRES1564, Available at: https://www.jelsciences.com/articles/jbres1564.pdf


Subject area(s)

References


  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. TL - 60. CA Cancer J Clin. 2010. doi:10.3322/caac.20073
  2. Howlader N, Noone AM, Krapcho M, et al. National Cancer Institute SEER Cancer Statistics Review 1975-2012. Natl Cancer Inst. 2015. doi: 10.1103/PhysRevA.69.053616
  3. Siegel R, Miller K, Jemal A. Cancer statistics, 2015 . CA Cancer J Clin. 2015;65(1):29. doi:10.3322/caac.21254.
  4. Ferraldeschi R, Pezaro C, Karavasilis V, de Bono J. Abiraterone and Novel Antiandrogens: Overcoming Castration Resistance in Prostate Cancer. Annu Rev Med. 2013;64(1):1-13. doi: 10.1146/annurev-med-121211-091605
  5. Roudier MP, True LD, Higano CS, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol. 2003. doi: 10.1109/INNOVATIONS.2011.5893843
  6. Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012. doi: 10.3322/caac.21149
  7. Syed DN, Khan N, Afaq F, Mukhtar H. Chemoprevention of prostate cancer through dietary agents: Progress and promise. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2193-2203. doi: 10.1158/1055-9965.EPI-06-0942
  8. Yedjou C, Izevbigie E, Tchounwou P. Preclinical assessment of Vernonia amygdalina leaf extracts as DNA damaging anti-cancer agent in the management of breast cancer. In: International Journal of Environmental Research and Public Health. 2008;5:337-341. doi: 10.3390/ijerph5050337
  9. Johnson W, Tchounwou PB, Yedjou CG. Therapeutic mechanisms of vernonia amygdalina delile in the treatment of prostate cancer. Molecules. 2017;22(10). doi: 10.3390/molecules22101594
  10. Oyedeji KO, Bolarinwa AF, Akintola AM. Effect Of Methanolic Extract of Vernonia Amygdalina on Haematological and Plasma Biochemical Parameters in Male Albino Rats. J Dent Med Sci. 2013.
  11. Yedjou CG. Vernonia amygdalina—Induced Growth Arrest and Apoptosis of Breast Cancer (MCF-7) Cells. Pharmacol Pharm. 2013. doi: 10.4236/pp.2013.41013
  12. Clement G. Yedjou SSTKW& PBT. Novel Cellular Staining Protocol And Antiproliferative Effect Of Vernonia Amygdalina Delile On Lung And Prostate Cancer Cells. August 2018. doi: 10.5281/ZENODO.1403369
  13. Yedjou CG, Tchounwou HM, Tchounwou PB. DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. Int J Environ Res Public Health. 2015;13(1). doi: 10.3390/ijerph13010056
  14. Yedjou C, Tchounwou P, Jenkins J, McMurray R. Basic mechanisms of arsenic trioxide (ATO)-induced apoptosis in human leukemia (HL-60) cells. J Hematol Oncol. 2010. doi: 10.1186/1756-8722-3-28
  15. Ioannou YA, Chen FW. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res. 1996. doi: 10.1093/nar/24.5.992
  16. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893-2917. doi: 10.1002/ijc.25516
  17. Potosky AL, Legler J, Albertsen PC, et al. Health outcomes after prostatectomy or radiotherapy for prostate cancer: results from the Prostate Cancer Outcomes Study. J Natl Cancer Inst. 2000;92(19):1582-1592.
  18. Stanford JL, Feng Z, Hamilton AS, et al. Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the Prostate Cancer Outcomes Study. JAMA. 2000;283(3):354-360. doi: 10.1001/jama.283.3.354
  19. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(February):143. doi: 10.1038/nrc723
  20. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007. doi: 10.1021/np068054v
  21. Singh S, Sharma B, Kanwar SS, Kumar A. Lead Phytochemicals for Anticancer Drug Development. Front Plant Sci. 2016. doi: 10.3389/fpls.2016.01667
  22. Bachrach Z. Contribution of Selected Medicinal Plants for Cancer Prevention and Therapy. Acta Fac Medicae Naissensis. 2012. doi: 10.2478/v10283-012-0016-4
  23. Efferth T, Koch E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr Drug Targets. 2011. doi: 10.2174/138945011793591626
  24. Zacchino SA, Butassi E, Cordisco E, Svetaz LA. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine. 2017.
  25. Gonzalez-Polo R-A. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci. 2005. doi: 10.1242/jcs.02447
  26. Edinger AL, Thompson CB. Death by design: Apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004. doi: 10.1016/j.ceb.2004.09.011
  27. Amin ARMR, Karpowicz PA, Carey TE, et al. Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 2015;35:S55-S77. doi: 10.1016/j.semcancer.2015.02.005
  28. Mantena SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther. 2006;5(2):296-308. doi: 10.1158/1535-7163.MCT-05-0448
  29. LU W, DU S, WANG J. Berberine inhibits the proliferation of prostate cancer cells and induces G0/G1 or G2/M phase arrest at different concentrations. Mol Med Rep. 2015;11(5):3920-3924. doi: 10.3892/mmr.2014.3139
  30. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287(4):914-920. doi: 10.1006/bbrc.2001.5672
  31. Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 2006;5(4):843-852. doi: 10.1158/1535-7163.MCT-05-0370
  32. Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6(9):1102-1114. doi: 10.4161/cc.6.9.4146
  33. Fulda S. Modulation of apoptosis by natural products for cancer therapy. Planta Med. 2010. doi: 10.1055/s-0030-1249961
  34. Bailly C. Ready for a comeback of natural products in oncology. Biochem Pharmacol. 2009. doi: 10.1016/j.bcp.2008.12.013
  35. Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release : its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis. 2002. doi: 10.1093/carcin/23.1.143
  36. Lou S, Wang Y, Yu Z, Guan K, Kan Q. Curcumin induces apoptosis and inhibits proliferation in infantile hemangioma endothelial cells via downregulation of MCL-1 and HIF-1α. Med (United States). 2018. doi: 10.1097/MD.0000000000009562
  37. Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011. doi: 10.1186/1756-9966-30-87
  38. Yeung MC. Accelerated apoptotic DNA laddering protocol. Biotechniques. 2002.
  39. Yedjou CG, Tchounwou PB. In vitro assessment of oxidative stress and apoptotic mechanisms of garlic extract in the treatment of acute promyelocytic leukemia. J Cancer Sci Ther. 2012;2012(Suppl 3):6. doi: 10.4172/1948-5956.S3-006
  40. Izevbigie EB. Discovery of water-soluble anticancer agents (edotides) from a vegetable found in Benin City, Nigeria. Exp Biol Med (Maywood). 2003;228(3):293-298. doi: 1535-3702/03/2283-0293
  41. Chen Z, Sun X, Shen S, et al. Wedelolactone, a naturally occurring coumestan, enhances interferon-γ signaling through inhibiting STAT1 protein dephosphorylation. J Biol Chem. 2013. doi: 10.1074/jbc.M112.442970
  42. Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res. 2014. doi: 10.1158/1940-6207.CAPR-14-0136
  43. Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. 2017. doi: 10.3390/ijms18030656


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search