Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9506588638

Extra Chromosomal Circular DNA: Recent Advances in Research

Biology Group    Start Submission

Safir Ullah Khan* and Munir Ullah Khan

Volume3-Issue4
Dates: Received: 2022-04-18 | Accepted: 2022-04-28 | Published: 2022-04-30
Pages: 445-452

Abstract

Extrachromosomal circular DNA (eccDNA) is a circular DNA molecule outside of eukaryotic staining, in which DNA forms in the genome or exogenous DNA in the cell. eccDNA is a special class of genetic material that can carry complete genes encoding functional proteins or RNA. Studies have shown that eccDNA can participate in various physiological and pathological processes in a special way, such as aging and the occurrence of tumors. This paper reviews the latest research progress of eccDNA and further expounds on the relationship between eccDNA and tumors.

FullText HTML FullText PDF DOI: 10.37871/jbres1463


Certificate of Publication




Copyright

© 2022 Khan SU, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Khan SU, Khan MU. Extra Chromosomal Circular DNA: Recent Advances in Research. J Biomed Res Environ Sci. 2022 Apr 30; 3(4): 445-452. doi: 10.37871/jbres1463, Article ID: JBRES1463, Available at: https://www.jelsciences.com/articles/jbres1463.pdf


Subject area(s)

References


  1. Kujirai T, Kurumizaka H. Transcription through the nucleosome. Curr Opin Struct Biol. 2020 Apr;61:42-49. doi: 10.1016/j.sbi.2019.10.007. Epub 2019 Nov 29. PMID: 31790919.
  2. Hotta Y, Bassel A. Molecular size and circularity of DNA in cells of mammals and higher plants. Proc Natl Acad Sci U S A. 1965 Feb;53(2):356-62. doi: 10.1073/pnas.53.2.356. PMID: 14294069; PMCID: PMC219520.
  3. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, Zhang W, Jameson N, Corces MR, Granja JM, Chen X, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019 Nov;575(7784):699-703. doi: 10.1038/s41586-019-1763-5. Epub 2019 Nov 20. PMID: 31748743; PMCID: PMC7094777.
  4. Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, Piazza MS, Allan KC, Mack SC, Wang X, Gimple RC, Wu Q, Rubin BP, Shetty S, Angers S, Dirks PB, Sallari RC, Lupien M, Rich JN, Scacheri PC. Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell. 2019 Nov 27;179(6):1330-1341.e13. doi: 10.1016/j.cell.2019.10.039. Epub 2019 Nov 21. PMID: 31761532; PMCID: PMC7241652.
  5. Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells. Trends Genet. 2018 Apr;34(4):270-278. doi: 10.1016/j.tig.2017.12.010. Epub 2018 Jan 9. PMID: 29329720; PMCID: PMC5881399.
  6. Liao Z, Jiang W, Ye L, Li T, Yu X, Liu L. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochim Biophys Acta Rev Cancer. 2020 Aug;1874(1):188392. doi: 10.1016/j.bbcan.2020.188392. Epub 2020 Jul 28. PMID: 32735964.
  7. Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008 Mar;53(6):1027-34. doi: 10.1111/j.1365-313X.2007.03394.x. Epub 2007 Dec 15. PMID: 18088310.
  8. Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci. 2020 Apr 2;21(7):2477. doi: 10.3390/ijms21072477. PMID: 32252492; PMCID: PMC7177960.
  9. Dennin RH. Overlooked: Extrachromosomal DNA and Their Possible Impact on Whole Genome Sequencing. Malays J Med Sci. 2018 Mar;25(2):20-26. doi: 10.21315/mjms2018.25.2.3. Epub 2018 Apr 27. PMID: 30918452; PMCID: PMC6422590.
  10. Verhaak RGW, Bafna V, Mischel PS. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer. 2019 May;19(5):283-288. doi: 10.1038/s41568-019-0128-6. PMID: 30872802; PMCID: PMC7168519.
  11. Yan Y, Guo G, Huang J. Current understanding of ex-trachromosomal circular DNA in cancer pathogenesis and thera-peutic resistance. J Hematol Oncol. 2020;13(1):124. doi: 10.1186/s13045-020-00960-9.
  12. Khan SU, Khan MU. The mechanism of mammalian mitochondrial quality control system. Journal of Chemistry and Nutritional Biochemistry. 2021;59-69. doi: 10.48185/jcnb.v2i2.387.
  13. Storlazzi CT, Fioretos T, Surace C. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet. 2006;15(6):933-42. doi: 10.1093/hmg/ddl010.
  14. Schmidt H, Taubert H, Lange H, Kriese K, Schmitt WD, Hoffmann S, Bartel F, Hauptmann S. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes. Oncol Rep. 2009 Aug;22(2):393-400. PMID: 19578782.
  15. Dennin RH, Wo JE. DNA sequences homologous to hepatitis C virus (HCV) in the extrachromosomal circular DNA in peripheral blood mononuclear cells of HCV-negative subjects. J Zhejiang Univ Sci B. 2019 Aug.;20(8):637-646. doi: 10.1631/jzus.B1800453. PMID: 31273961; PMCID: PMC6656560.
  16. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011 Jan 7;144(1):27-40. doi: 10.1016/j.cell.2010.11.055. PMID: 21215367; PMCID: PMC3065307.
  17. Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol Cancer Res. 2017 Sep;15(9):1197-1205. doi: 10.1158/1541-7786.MCR-17-0095. Epub 2017 May 26. PMID: 28550083; PMCID: PMC5581709.
  18. Wang T, Zhang H, Zhou Y, Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J Transl Med. 2021 Jun 10;19(1):257. doi: 10.1186/s12967-021-02927-x. PMID: 34112178; PMCID: PMC8194206.
  19. Cox D, Yuncken C, Spriggs AI. Minute chromatin bodies in malignant tumours of childhood. Lancet. 1965 Jul 10;1(7402):55-8. doi: 10.1016/s0140-6736(65)90131-5. PMID: 14304929.
  20. Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet. 2008 Jan;122(6):565-81. doi: 10.1007/s00439-007-0433-0. Epub 2007 Sep 28. PMID: 17901982.
  21. Khan S, Khan M. Molecular developments in cell models of fatty liver disease. DYSONA- Life Science. 2022;1:16-29. doi: 10.30493/DLS.2022.325915.
  22. Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, Dutta A. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012 Apr 6;336(6077):82-6. doi: 10.1126/science.1213307. Epub 2012 Mar 8. Erratum in: Science. 2012 Jun 22;336(6088):1506. PMID: 22403181; PMCID: PMC3703515.
  23. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB, Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017 Mar 2;543(7643):122-125. doi: 10.1038/nature21356. Epub 2017 Feb 8. PMID: 28178237; PMCID: PMC5334176.
  24. Moller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, Maretty L, Hansen AJ, Snyder MP, Pilegaard H, Lam HYK, Regenberg B. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018 Mar 14;9(1):1069. doi: 10.1038/s41467-018-03369-8. PMID: 29540679; PMCID: PMC5852086.
  25. Paulsen T, Shibata Y, Kumar P, Dillon L, Dutta A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 2019 May 21;47(9):4586-4596. doi: 10.1093/nar/gkz155. PMID: 30828735; PMCID: PMC6511871.
  26. Bailey C, Shoura MJ, Mischel PS, Swanton C. Extrachromosomal DNA-relieving heredity constraints, accelerating tumour evolution. Ann Oncol. 2020 Jul;31(7):884-893. doi: 10.1016/j.annonc.2020.03.303. Epub 2020 Apr 7. PMID: 32275948.
  27. Ruiz JC, Choi KH, von Hoff DD, Roninson IB, Wahl GM. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol Cell Biol. 1989 Jan;9(1):109-15. doi: 10.1128/mcb.9.1.109-115.1989. PMID: 2648129; PMCID: PMC362151.
  28. Khan SU. Therapeutic application of genetically engineered ribosome-inactivating toxin proteins for cancer. J Biomed Res Environ Sci. 2021;2(12):1216-1228. doi: 10.37871/jbres1375.
  29. Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, Pommier Y, Takeda S, Dutta A. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015 Jun 23;11(11):1749-59. doi: 10.1016/j.celrep.2015.05.020. Epub 2015 Jun 4. PMID: 26051933; PMCID: PMC4481157.
  30. Chiu RWK, Dutta A, Henssen AG, Dennis LYM, Mischel P, Regenberg B. What is extra-chromosomal circular DNA and what does it do. Clin Chem. 2020;66(6):754-9. doi: 10.1093/clinchem/hvaa096.
  31. Gu X, Yu J, Chai P, Ge S, Fan X. Novel insights into extrachromosomal DNA: redefining the onco-drivers of tumor progression. J Exp Clin Cancer Res. 2020 Oct 12;39(1):215. doi: 10.1186/s13046-020-01726-4. PMID: 33046109; PMCID: PMC7552444.
  32. Luger K, Hansen JC. Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol. 2005 Apr;15(2):188-96. doi: 10.1016/j.sbi.2005.03.006. PMID: 15837178.
  33. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res. 2012 Apr;22(4):623-32. doi: 10.1101/gr.125187.111. Epub 2012 Feb 1. PMID: 22300631; PMCID: PMC3317145.
  34. Neurohr GE, Terry RL, Sandikci A, Zou K, Li H, Amon A. Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes Dev. 2018 Aug 1;32(15-16):1075-1084. doi: 10.1101/gad.312140.118. Epub 2018 Jul 24. PMID: 30042134; PMCID: PMC6075151.
  35. Sinclair DA, Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 1997 Dec 26;91(7):1033-42. doi: 10.1016/s0092-8674(00)80493-6. PMID: 9428525.
  36. Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007 Feb;175(2):477-85. doi: 10.1534/genetics.107.071399. PMID: 17322354; PMCID: PMC1800602.
  37. Horigome C, Kobayashi T. Rejuvenation of ribosomal RNA gene repeats at the nuclear pore. Curr Genet. 2020 Feb;66(1):7-13. doi: 10.1007/s00294-019-01024-3. Epub 2019 Aug 7. PMID: 31392389.
  38. Ganley AR, Ide S, Saka K, Kobayashi T. The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol Cell. 2009 Sep 11;35(5):683-93. doi: 10.1016/j.molcel.2009.07.012. PMID: 19748361.
  39. Khan SU, Khan MU. Review on gene regulation: DNA-protein and protein-protein interactions and their regulatory elements. Journal of Chemistry and Nutritional Biochemistry. 2021;2(2):35-45. doi: 10.48185/jcnb.v2i2.378.
  40. Mansisidor A, Molinar T Jr, Srivastava P, Dartis DD, Pino Delgado A, Blitzblau HG, Klein H, Hochwagen A. Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles. Mol Cell. 2018 Nov 1;72(3):583-593.e4. doi: 10.1016/j.molcel.2018.08.036. Epub 2018 Oct 4. PMID: 30293780; PMCID: PMC6214758.
  41. Burkhalter MD, Sogo JM. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell. 2004 Aug 13;15(3):409-21. doi: 10.1016/j.molcel.2004.06.024. PMID: 15304221.
  42. Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell. 1999 Apr;3(4):447-55. doi: 10.1016/s1097-2765(00)80472-4. PMID: 10230397.
  43. Morlot S, Song J, Léger-Silvestre I, Matifas A, Gadal O, Charvin G. Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep. 2019 Jul 9;28(2):408-422.e4. doi: 10.1016/j.celrep.2019.06.032. PMID: 31291577.
  44. Del Zotto G, Principi E, Antonini F, Baratto S, Panicucci C, Bruno C, Raffaghello L. Comprehensive Phenotyping of Peripheral Blood T Lymphocytes in Healthy Mice. Cytometry A. 2021 Mar;99(3):243-250. doi: 10.1002/cyto.a.24246. Epub 2020 Nov 11. PMID: 33098601.
  45. Jones JM, Gellert M. The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev. 2004 Aug;200:233-48. doi: 10.1111/j.0105-2896.2004.00168.x. PMID: 15242409.
  46. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, van Dongen JJ. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med (Berl). 2001 Nov;79(11):631-40. doi: 10.1007/s001090100271. PMID: 11715066.
  47. Jung D, Alt FW. Unraveling V(D)J recombination; insights into gene regulation. Cell. 2004 Jan 23;116(2):299-311. doi: 10.1016/s0092-8674(04)00039-x. PMID: 14744439.
  48. Sun W, Quan C, Huang Y, Ji W, Yu L, Li X, Zhang Y, Zheng Z, Zou H, Li Q, Xu P, Feng Y, Li L, Zhang Y, Cui Y, Jia X, Meng X, Zhang C, Jin Y, Bai J, Yu J, Yu Y, Yang J, Fu S. Constitutive ERK1/2 activation contributes to production of double minute chromosomes in tumour cells. J Pathol. 2015 Jan;235(1):14-24. doi: 10.1002/path.4439. Epub 2014 Nov 6. PMID: 25214430; PMCID: PMC4280677.
  49. Kuttler F, Mai S. Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis. Semin Cancer Biol. 2007 Feb;17(1):56-64. doi: 10.1016/j.semcancer.2006.10.007. Epub 2006 Oct 26. PMID: 17116402.
  50. Cai M, Zhang H, Hou L, Gao W, Song Y, Cui X, Li C, Guan R, Ma J, Wang X, Han Y, Lv Y, Chen F, Wang P, Meng X, Fu S. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer. 2019 Mar 1;144(5):1037-1048. doi: 10.1002/ijc.31781. Epub 2018 Sep 29. PMID: 30070702; PMCID: PMC6586039.
  51. Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, Caimi L, Imberti L. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013 May 9;11:119. doi: 10.1186/1479-5876-11-119. PMID: 23656963; PMCID: PMC3666889.
  52. Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol. 2020 Jul 31;11:1341. doi: 10.3389/fimmu.2020.01341. PMID: 32849495; PMCID: PMC7412601.
  53. Khan SU, Khan MU. Recent Developments and Applications of Single-Cell RNA Sequencing Technology in Cell Classification. J Biomed Res Environ Sci. 2021 Dec 29;2(12):1283-1290. doi: 10.37871/jbres1383.
  54. Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003 Jun;13(6A):1133-45. doi: 10.1101/gr.907603. PMID: 12799349; PMCID: PMC403641.
  55. Cohen S, Mechali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucleic Acids Res. 2001 Jun 15;29(12):2542-8. doi: 10.1093/nar/29.12.2542. PMID: 11410662; PMCID: PMC55730.
  56. Tanaka H, Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer. 2020 Jun;6(6):462-477. doi: 10.1016/j.trecan.2020.02.019. Epub 2020 Mar 24. PMID: 32383436; PMCID: PMC7285850.
  57. Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T. When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res. 2005 Jan 15;302(2):233-43. doi: 10.1016/j.yexcr.2004.09.001. PMID: 15561104.
  58. Khan SU, Khan MU. The role of amino acid metabolic reprogramming in tumor development and immunotherapy. Biochemistry and Molecular Biology. 2022;7(1):6-12. doi: 10.11648/j.bmb.20220701.12.
  59. Brewer BJ, Payen C, Raghuraman MK, Dunham MJ. Origin-dependent inverted-repeat amplification: a replication-based model for generating palindromic amplicons. PLoS Genet. 2011 Mar;7(3):e1002016. doi: 10.1371/journal.pgen.1002016. Epub 2011 Mar 17. PMID: 21437266; PMCID: PMC3060070.
  60. L Abbate A, Tolomeo D, Cifola I, Severgnini M, Turchiano A, Augello B, Squeo G, D Addabbo P, Traversa D, Daniele G, Lonoce A, Pafundi M, Carella M, Palumbo O, Dolnik A, Muehlematter D, Schoumans J, Van Roy N, De Bellis G, Martinelli G, Merla G, Bullinger L, Haferlach C, Storlazzi CT. MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia. 2018 Oct;32(10):2152-2166. doi: 10.1038/s41375-018-0033-0. Epub 2018 Feb 22. Erratum in: Leukemia. 2018 Jul 9;: PMID: 29467491; PMCID: PMC6170393.
  61. Venkatesan S, Swanton C. Tumor Evolutionary Principles: How Intratumor Heterogeneity Influences Cancer Treatment and Outcome. Am Soc Clin Oncol Educ Book. 2016;35:e141-9. doi: 10.1200/EDBK_158930. PMID: 27249716.
  62. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 2017 Feb 9;168(4):613-628. doi: 10.1016/j.cell.2017.01.018. PMID: 28187284.
  63. Sacristan C, Ahmad MUD, Keller J, Fermie J, Groenewold V, Tromer E, Fish A, Melero R, Carazo JM, Klumperman J, Musacchio A, Perrakis A, Kops GJ. Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nat Cell Biol. 2018 Jul;20(7):800-810. doi: 10.1038/s41556-018-0130-3. Epub 2018 Jun 18. PMID: 29915359; PMCID: PMC6485389.
  64. Amirouchene-Angelozzi N, Swanton C, Bardelli A. Tumor Evolution as a Therapeutic Target. Cancer Discov. 2017 Jul 20. doi: 10.1158/2159-8290.CD-17-0343. Epub ahead of print. PMID: 28729406.
  65. Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, Liu J, Deshpande V, Rajkumar U, Namburi S, Amin SB, Yi E, Menghi F, Schulte JH, Henssen AG, Chang HY, Beck CR, Mischel PS, Bafna V, Verhaak RGW. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020 Sep;52(9):891-897. doi: 10.1038/s41588-020-0678-2. Epub 2020 Aug 17. PMID: 32807987; PMCID: PMC7484012.
  66. Mitsuda SH, Shimizu N. Epigenetic Repeat-Induced Gene Silencing in the Chromosomal and Extrachromosomal Contexts in Human Cells. PLoS One. 2016 Aug 15;11(8):e0161288. doi: 10.1371/journal.pone.0161288. PMID: 27525955; PMCID: PMC4985131.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search