Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9501836614

Simple Review of Environmental Analytic Methods for the Determination of Pesticide Metabolites

Medicine Group    Start Submission

Alphonse Mendy*, Jean Pierre Bakhoum, Diu00e8ne Diu00e9gane Thiaru00e9, Mame Diabou Gaye-Seye and Atanasse Coly

Volume3-Issue3
Dates: Received: 2022-03-21 | Accepted: 2022-03-24 | Published: 2022-03-25
Pages: 287-293

Abstract

The findings of research proceedings on pesticide metabolites detection are both an environmental inventory and prevention of potential foodstuffs contaminants. Since, the requirement of a quality environment is a condition for ensuring food security, the newly designed methods with validated sensitivities and efficiencies should be highlighted as solutions for reducing pesticide metabolites. In this respect, this review provides information about pesticides metabolism subject to various analytical conditions applied to standard methods, in addition to the pesticide/related metabolites ratio (R) developed for the intended purpose.

FullText HTML FullText PDF DOI: 10.37871/jbres1435


Certificate of Publication




Copyright

© 2022 Mendy A, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Mendy A, Bakhoum JP, Thiaré DD, Gaye-Seye MD, Coly A. Simple Review of Environmental Analytic Methods for the Determination of Pesticide Metabolites. J Biomed Res Environ Sci. 2022 Mar 25; 3(3): 287-293. doi: 10.37871/jbres1435, Article ID: JBRES1435, Available at: https://www.jelsciences.com/articles/jbres1435.pdf


Subject area(s)

References


  1. European Parliament and Council, “Directive 2013/39/EU of 12 August 2013 amending Directives 2000/60/EC and 2008/ 105/EC as regards priority substances in the field of water policy,” Official Journal of the European Union. 2013.
  2. Mendy A, Thiaré DD, Bodian ET, Sambou S, Sarr I, Gaye-Seye MD, Coly A. Micellar-enhanced thermochemically induced fluorescence derivatization (ME-TIFD) method for the determination of metolachlor herbicide residues in water. Chemical Thermodynamics and Thermal Analysis. 2021;3-4: 100009. doi: 10.1016/j.ctta.2021.100009.
  3. USEPA. United States Environmental Protection Agency. Research program description-Ground water research. EPA/600/9-88/005. USEPA: Washington DC, 1998.
  4. WHO/FAO/UNEP, Children are facing high risks from pesticide poisoning. Geneva, 24 September 2004. http://www.who.int
  5. Pesticide Residues in Food and Feeds. Codex Pesticides Residues in Food Online Database. https://tinyurl.com/3yskkktd
  6. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A. 2009;1216:885-891. doi: 10.1016/j.chroma.2008.11.076.
  7. Xu X, Yang H, Wang L, Han B, Wang X, Lee FSC. Analysis of chloroacetanilide herbicides in water samples by solid phase microextraction coupled with gas chromatography-mass spectrometry. Analytica Chimica Acta. 2007;591:87-96. doi: 10.1016/j.aca.2007.03.044.
  8. Gonçalves C, Carvalho JJ, Azenha MA, Alpendurada MF. Optimization of supercritical fluid extraction of pesticide residues in soil by means of central composite design and analysis by gas chromatography-tandem mass spectrometry. J Chromatogr A. 2006 Mar 31;1110(1-2):6-14. doi: 10.1016/j.chroma.2006.01.089. Epub 2006 Feb 14. PMID: 16480994.
  9. Mai H, Gonzalez P, Pardon P, Tapie N, Budzinski H, Cachot J, Morin B. Comparative responses of sperm cells and embryos of Pacific oyster (Crassostrea gigas) to exposure to metolachlor and its degradation products. Aquat Toxicol. 2014 Feb;147:48-56. doi: 10.1016/j.aquatox.2013.11.024. Epub 2013 Dec 7. PMID: 24378469.
  10. Schummer C, Salquèbre G, Briand O, Millet M, Appenzeller BM. Determination of farm workers' exposure to pesticides by hair analysis. Toxicol Lett. 2012 Apr 25;210(2):203-10. doi: 10.1016/j.toxlet.2011.11.019. Epub 2011 Nov 28. PMID: 22154536.
  11. Yurchenko OV, Radashevsky VI, Hsieh HL, Reunov AA. Ultrastructural com-parison of the spermatozoa of the Pacific oyster Crassostrea gigas inhabitingpolluted and relatively clean areas in Taiwan. Aquat Ecol. 2009;43:513-519. doi: 10.1007/s10452-007-9161-8.
  12. Picó Y, Farré M, Soler C, Barceló D. Confirmation of fenthion metabolites in oranges by IT-MS and QqTOF-MS. Anal Chem. 2007 Dec 15;79(24):9350-63. doi: 10.1021/ac071559l. Epub 2007 Nov 17. PMID: 18020315.
  13. Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere. 2002 Jan;46(4):519-26. doi: 10.1016/s0045-6535(01)00193-x. PMID: 11838430.
  14. Caracciolo AB, Grenni P, Ciccoli R, Di Landa G, Cremisini C. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization. Pest Manag Sci. 2005 Sep;61(9):863-9. doi: 10.1002/ps.1096. PMID: 16015577.
  15. Sørensen SR, Albers CN, Aamand J. Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol. 2008 Apr;74(8):2332-40. doi: 10.1128/AEM.02687-07. Epub 2008 Feb 22. PMID: 18296530; PMCID: PMC2293153.
  16. Gao X, Guo H, Zhang WW, Gu C. Simultaneous Determination of Amitraz and its Metabolites in Blood by Support Liquid Extraction Using UPHLC-QTOF. J Anal Toxicol. 2016 Jul;40(6):437-44. doi: 10.1093/jat/bkw044. Epub 2016 Jun 23. PMID: 27339482.
  17. Picó Y, Farré Ml, Tokman N, Barceló D. Rapid and sensitive ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry for the quantification of amitraz and identification of its degradation products in fruits. J Chromatogr A. 2008 Aug 29;1203(1):36-46. doi: 10.1016/j.chroma.2008.07.018. Epub 2008 Jul 11. PMID: 18656887.
  18. El Beit IOD, Wheelock JV, Cotton DE. Separation and characterization of dimethoate metabolites developing in soil and alkaline solution. International Journal of Environmental Studies. 1977;12:215-225. doi: 10.1080/00207237808709784.
  19. Scribner EA, Thurman EM, Zimmerman LR. Analysis of selected herbicide metabolites in surface and ground water of the United States. Sci Total Environ. 2000 Apr 5;248(2-3):157-67. doi: 10.1016/s0048-9697(99)00539-2. PMID: 10805236.
  20. Egea TC, da Silva R, Boscolo M, Rigonato J, Monteiro DA, Grünig D, da Silva H, van der Wielen F, Helmus R, Parsons JR, Gomes E. Diuron degradation by bacteria from soil of sugarcane crops. Heliyon. 2017 Dec 28;3(12):e00471. doi: 10.1016/j.heliyon.2017.e00471. PMID: 29322098; PMCID: PMC5753625.
  21. Review of carbaryl-Australian Pesticides and Veterinary Medicines Authority, Australia. https://tinyurl.com/3vt9yxtu
  22. Locke MA, Zablotowicz RM, Steinriede RW, Kingery WL. Degradation and sorption of fluometuron and metabolites in conservation tillage soils. J Agric Food Chem. 2007 Feb 7;55(3):844-51. doi: 10.1021/jf062070g. PMID: 17263484.
  23. Mercadante R, Polledri E, Scurati S, Moretto A, Fustinoni S. Identification of Metabolites of the Fungicide Penconazole in Human Urine. Chem Res Toxicol. 2016 Jul 18;29(7):1179-86. doi: 10.1021/acs.chemrestox.6b00149. Epub 2016 Jun 17. PMID: 27268969.
  24. Abass K, Reponen P, Mattila S, Pelkonen O. Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human. Chem Biol Interact. 2009 Oct 7;181(2):210-9. doi: 10.1016/j.cbi.2009.06.001. Epub 2009 Jun 11. PMID: 19523935.
  25. Siampiringue M, Chahboune R, Wong-Wah-Chung P, Sarakha M. Carbaryl photochemical degradation on soil model surfaces. Soil Syst. 2019;17:1-14. doi: 10.3390/soilsystems3010017.
  26. Chen S, Luo J, Hu M, Geng P, Zhang Y. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment. PLoS One. 2012;7(2):e30862. doi: 10.1371/journal.pone.0030862. Epub 2012 Feb 13. PMID: 22348025; PMCID: PMC3278408.
  27. Bicker W, Lämmerhofer M, Lindner W. Determination of chlorpyrifos metabolites in human urine by reversed-phase/weak anion exchange liquid chromatography-electrospray ionisation-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):160-9. doi: 10.1016/j.jchromb.2005.06.003. PMID: 15994139.
  28. Chang PL, Hsieh MM, Chiu TC. Recent Advances in the Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. Int J Environ Res Public Health. 2016 Apr 8;13(4):409. doi: 10.3390/ijerph13040409. PMID: 27070634; PMCID: PMC4847071.
  29. FAO/WHO Pesticide residues in food. Toxicological evaluations, World Health Organization, Geneva, 2003.
  30. Mandelbaum RT, Sadowsky MJ, Wackett LP. Microbial degradation of s-triazine herbicides in: Le Baron H, McFarland J, Burnside O. editors. The triazine herbicides 50 years revolutionizing agriculture. Elsevier; San Diego: California. 2008. p. 301-328.
  31. Laudien R, Mitzner R. Phenylureas. Part 2. Mechanism of the acid hydrolysis of phenylureas. J Chem Soc Perkin Trans 2. 2001;12230-2232. doi: 10.1039/B008535I
  32. Laudien R, Mitzner R. Phenylureas. Part 1. Mechanism of the basic hydrolysis of phenylureas. J. Chem Soc Perkin Trans 2. 2001;11:2226-2229. doi: 10.1039/B008532O.
  33. Aga DS, Thurman EM. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil. Environ Sci Technol. 2001 Jun 15;35(12):2455-60. doi: 10.1021/es991264s. PMID: 11432548.
  34. Kolpin DW, Thurman EM, Linhart SM. Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Sci Total Environ. 2000 Apr 5;248(2-3):115-22. doi: 10.1016/s0048-9697(99)00535-5. PMID: 10805232.
  35. Lewis SE, Schaffelke B, Shaw M, Bainbridge ZT, Rohde KW, Kennedy K, Davis AM, Masters BL, Devlin MJ, Mueller JF, Brodie JE. Assessing the additive risks of PSII herbicide exposure to the Great Barrier Reef. Mar Pollut Bull. 2012;65(4-9):280-91. doi: 10.1016/j.marpolbul.2011.11.009. Epub 2011 Dec 14. PMID: 22172236.
  36. Hugnet C, Buronrosse F, Pineau X, Cadoré JL, Lorgue G, Berny PJ. Toxicity and kinetics of amitraz in dogs. Am J Vet Res. 1996 Oct;57(10):1506-10. PMID: 8896693.
  37. Hsu WH, Kakuk TJ. Effect of amitraz and chlordimeform on heart rate and pupil diameter in rats: mediated by alpha 2-adrenoreceptors. Toxicol Appl Pharmacol. 1984 May;73(3):411-415. doi: 10.1016/0041-008x(84)90093-0. PMID: 6326347.
  38. Hsu WH, Lu ZX, Hembrough FB. Effect of amitraz on heart rate and aortic blood pressure in conscious dogs: influence of atropine, prazosin, tolazoline, and yohimbine. Toxicol Appl Pharmacol. 1986 Jun 30;84(2):418-22. doi: 10.1016/0041-008x(86)90150-x. PMID: 3012823.
  39. Amine-Khodja A, Boulkamh A, Boule P. Photochemical behaviour of phenylurea herbicides. Photochem Photobiol Sci. 2004 Feb;3(2):145-56. doi: 10.1039/b307968f. Epub 2003 Nov 21. PMID: 14872229.
  40. Chemtura Netherlands BV. Diflubenzuron product‐type 18 insecticide. Swedish Chemicals Agency. November 2007.
  41. Weselak M, Arbuckle TE, Wigle DT, Krewski D. In utero pesticide exposure and childhood morbidity. Environ Res. 2007 Jan;103(1):79-86. doi: 10.1016/j.envres.2006.09.001. Epub 2006 Nov 7. PMID: 17084836.
  42. Thiam A, Sagna MB. Monitoring des pesticides au niveau des communautés à la base. Rapport Régional Afrique. Pesticide Action Network Africa, Dakar, Sénégal. 2009. p. 57.
  43. Ding G, Bao Y. Revisiting pesticide exposure and children's health: focus on China. Sci Total Environ. 2014 Feb 15;472:289-95. doi: 10.1016/j.scitotenv.2013.11.067. Epub 2013 Nov 30. PMID: 24291629.
  44. WHO/FAO/UNEP, Children are facing high risks from pesticide poisoning. Geneva, 24 September 2004. http://www.who.int
  45. Patil SH, Banerjee K, Dasgupta S, Oulkar DP, Patil SB, Jadhav MR, Savant RH, Adsule PG, Deshmukh MB. Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2009 Mar 20;1216(12):2307-19. doi: 10.1016/j.chroma.2009.01.091. Epub 2009 Jan 31. PMID: 19215926.
  46. Banerjee K, Patil SH, Dasgupta S, Oulkar DP, Patil SB, Savant R, Adsule PG. Optimization of separation and detection conditions for the multiresidue analysis of pesticides in grapes by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2008 May 9;1190(1-2):350-7. doi: 10.1016/j.chroma.2008.03.017. Epub 2008 Mar 12. PMID: 18371973.
  47. Walorczyk S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography-triple quadrupole tandem mass spectrometry. J Chromatogr A. 2007 Sep 21;1165(1-2):200-12. doi: 10.1016/j.chroma.2007.07.071. Epub 2007 Aug 1. PMID: 17707387.
  48. Walorczyk S. Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography-tandem quadrupole mass spectrometry II. Improvement and extension to new analytes. J Chromatogr A. 2008 Oct 24;1208(1-2):202-14. doi: 10.1016/j.chroma.2008.08.068. Epub 2008 Aug 23. PMID: 18778832.
  49. Walorczyk S. Application of gas chromatography/tandem quadrupole mass spectrometry to the multi-residue analysis of pesticides in green leafy vegetables. Rapid Commun Mass Spectrom. 2008 Dec;22(23):3791-801. doi: 10.1002/rcm.3800. PMID: 18973193.
  50. Okihashi M, Takatori S, Kitagawa Y, Tanaka Y. Simultaneous analysis of 260 pesticide residues in agricultural products by gas chromatography/triple quadrupole mass spectrometry. J AOAC Int. 2007 Jul-Aug;90(4):1165-79. PMID: 17760355.
  51. Alder L, Greulich K, Kempe G, Vieth B. Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrom Rev. 2006 Nov-Dec;25(6):838-65. doi: 10.1002/mas.20091. PMID: 16755599.
  52. Kuster M, López de Alda M, Barceló D. Analysis of pesticides in water by liquid chromatography-tandem mass spectrometric techniques. Mass Spectrom Rev. 2006 Nov-Dec;25(6):900-16. doi: 10.1002/mas.20093. PMID: 16705628.
  53. Lacorte S, Fernandez-Alba AR. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom Rev. 2006 Nov-Dec;25(6):866-80. doi: 10.1002/mas.20094. PMID: 16752429.
  54. Niessen WM, Manini P, Andreoli R. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2006 Nov-Dec;25(6):881-99. doi: 10.1002/mas.20097. PMID: 16783795.
  55. Picó Y, Font G, Ruiz MJ, Fernández M. Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety. Mass Spectrom Rev. 2006 Nov-Dec;25(6):917-60. doi: 10.1002/mas.20096. PMID: 16788925.
  56. García-Reyes JF, Molina-Díaz A, Fernandez-Alba AR. Identification of pesticide transformation products in food by liquid chromatography/time-of-flight mass spectrometry via "fragmentation-degradation" relationships. Anal Chem. 2007 Jan 1;79(1):307-21. doi: 10.1021/ac061402d. PMID: 17194155.
  57. Richardson SD. Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem. 2008 Jun 15;80(12):4373-402. doi: 10.1021/ac800660d. Epub 2008 May 23. PMID: 18498180.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search