Covid-19 Research

Mini Review

OCLC Number/Unique Identifier: 9451169265

Neuroprotective Effects of Thiazolidine-4-Carboxylic Acid Derivatives on Memory Impairment and Neurodegeneration

Medicine Group    Start Submission

Mojtaba Ehsanifar* and Zeinab Montazeri

Volume3-Issue2
Dates: Received: 2022-02-22 | Accepted: 2022-02-28 | Published: 2022-02-28
Pages: 210-214

Abstract

Some studies have shown numerous biological activities of Thiazolidine derivatives, including neuroprotection. The production of inflammatory markers and Reactive Oxygen Species (ROS) plays a major role in nerve damage that leads to memory impairment. Several studies have shown that alcohol consumption impairs memory in adults. However, the underlying mechanism is still unclear. Ethanol treatment also leads to memory impairment in mice. Exposure to ambient pollutants such as air pollutants also can be adversely impacted the Central Nervous System (CNS) by the activation of proinflammatory pathways and reactive oxygen species. Thus, targeting neuroinflammation and oxidative distress can be a useful strategy to eliminate the obvious symptoms of neurodegeneration. In addition, treatment with Thiazolidine-4-Carboxylic Acid derivatives reduces oxidative stress, neuroinflammation, and ethanol-induced memory impairment. In general, Thiazolidine derivatives may be useful in reducing neuroinflammation by acting on different stages of inflammation. In the current mini-review, we examined the neuroprotective potential of these compounds in a model of ethanol-induced neuritis.

FullText HTML FullText PDF DOI: 10.37871/jbres1424


Certificate of Publication




Copyright

© 2022 Ehsanifar M, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Ehsanifar M, Montazeri Z. Neuroprotective Effects of Thiazolidine-4-Carboxylic Acid Derivatives on Memory Impairment and Neurodegeneration. J Biomed Res Environ Sci. 2022 Feb 28; 3(2): 210-214. doi: 10.37871/jbres1424, Article ID: JBRES1424, Available at: https://www.jelsciences.com/articles/jbres1424.pdf


Subject area(s)

References


  1. Geller MD, Sardar SB, Phuleria H, Fine PM, Sioutas C. Measurements of particle number and mass concentrations and size distributions in a tunnel environment. Environ Sci Technol. 2005 Nov 15;39(22):8653-8663. doi: 10.1021/es050360s. PMID: 16323759.
  2. Lanki T. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environmental Health Perspectives. 2006;114(5):655. https://tinyurl.com/yeystxf2
  3. Jonidi Jafari A, Ehsanifar. The share of different vehicles in air pollutant emission in tehran, using 2013 traffic information. Caspian Journal of Health Research. 2016;2(2):28-36. https://tinyurl.com/5n6tyk6y
  4. Ehsanifar M, Banihashemian, Farokhmanesh. Exposure to urban air pollution nanoparticles and CNS disease. On J Neur & Br Disord. 2021;5(5):520-526. https://tinyurl.com/yckpyvyv
  5. Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, Jafari AJ. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. Ecotoxicol Environ Saf. 2019 Jan 30;168:338-347. doi: 10.1016/j.ecoenv.2018.10.090. Epub 2018 Nov 2. PMID: 30391838.
  6. Ehsanifar M, Jafari AJ, Nikzad H, Zavareh MS, Atlasi MA, Mohammadi H, Tameh AA. Prenatal exposure to diesel exhaust particle
  7. s causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol Environ Saf. 2019 Jul 30;176:34-41. doi: 10.1016/j.ecoenv.2019.03.090. Epub 2019 Mar 25. PMID: 30921694.
  8. Ehsanifar M, Banihashemian. Exposure to air pollution nanoparticles: Oxidative stress and neuroinfl ammation. J Biomed Res Environ Sci. 2021;2(10):964-976. https://tinyurl.com/ykdbc6a7
  9. Ehsanifar M, Banihashemian, Farokhmanesh. Exposure to ambient ultra-fine particles and stroke. 2021. https://tinyurl.com/2p9ebxxe
  10. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010 Jun 1;121(21):2331-2378. doi: 10.1161/CIR.0b013e3181dbece1. Epub 2010 May 10. PMID: 20458016.
  11. Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience. 2009 Feb 6;158(3):1062-1073. doi: 10.1016/j.neuroscience.2008.07.031. Epub 2008 Jul 25. PMID: 18706982.
  12. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005 Aug;19(10):1329-1331. doi: 10.1096/fj.05-3776fje. Epub 2005 May 26. PMID: 15919760.
  13. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, Perry VH. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009 Feb 15;65(4):304-312. doi: 10.1016/j.biopsych.2008.07.024. Epub 2008 Sep 18. PMID: 18801476; PMCID: PMC2633437.
  14. Ehsanifar M, Montazeri Z, Taheri MA, Rafati M, Behjati M, Karimian M. Hippocampal inflammation and oxidative stress following exposure to diesel exhaust nanoparticles in male and female mice. Neurochem Int. 2021 May;145:104989. doi: 10.1016/j.neuint.2021.104989. Epub 2021 Feb 12. PMID: 33582162.
  15. Ehsanifar M. Airborne aerosols particles and COVID-19 transition. Environ Res. 2021 Sep;200:111752. doi: 10.1016/j.envres.2021.111752. Epub 2021 Jul 22. PMID: 34302822; PMCID: PMC8295061.
  16. Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Ther. 2010 Dec;128(3):519-548. doi: 10.1016/j.pharmthera.2010.08.007. Epub 2010 Sep 8. PMID: 20813131.
  17. Ehsanifar M, Jafari AJ, Montazeri Z, Kalantari RR, Gholami M, Ashtarinezhad A. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. J Environ Health Sci Eng. 2021 Jan 22;19(1):261-272. doi: 10.1007/s40201-020-00600-x. PMID: 34150234; PMCID: PMC8172730.
  18. Heemels MT. Neurodegenerative diseases. Nature. 2016 Nov 10;539(7628):179. doi: 10.1038/539179a. PMID: 27830810.
  19. Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel). 2018 May 11;11(2):44. doi: 10.3390/ph11020044. PMID: 29751602; PMCID: PMC6027455.
  20. Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release. 2021 Feb 10;330:1152-1167. doi: 10.1016/j.jconrel.2020.11.021. Epub 2020 Nov 13. PMID: 33197487.
  21. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015 Feb;16(2):109-120. doi: 10.1038/nrn3887. Epub 2015 Jan 15. PMID: 25588378; PMCID: PMC4312418.
  22. Gitler AD, Dhillon, Shorter. Neurodegenerative disease: models, mechanisms, and a new hope. 2017:499-502. https://tinyurl.com/mtpf2k97
  23. Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated five-membered thiazolidines and their derivatives: from synthesis to biological applications. Top Curr Chem (Cham). 2020 Mar 23;378(2):34. doi: 10.1007/s41061-020-0298-4. PMID: 32206929; PMCID: PMC7101601.
  24. Vuong T, Mallet JF, Ouzounova M, Rahbar S, Hernandez-Vargas H, Herceg Z, Matar C. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. J Transl Med. 2016 Jan 14;14:13. doi: 10.1186/s12967-016-0770-7. PMID: 26762586; PMCID: PMC4712588.
  25. Lu Y, Li CM, Wang Z, Ross CR 2nd, Chen J, Dalton JT, Li W, Miller DD. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: Synthesis, biological evaluation, and structure-activity relationships. J Med Chem. 2009 Mar 26;52(6):1701-1711. doi: 10.1021/jm801449a. PMID: 19243174; PMCID: PMC2760094.
  26. Abdellatif KR, Abdelgawad MA, Elshemy HA, Alsayed SS. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem. 2016 Feb;64:1-12. doi: 10.1016/j.bioorg.2015.11.001. Epub 2015 Nov 6. PMID: 26561742.
  27. Marc G. New phenolic derivatives of thiazolidine-2, 4-dione with antioxidant and antiradical properties: synthesis, characterization, in vitro evaluation, and quantum studies. Molecules. 2019;24(11):2060. https://tinyurl.com/4vsyyb97
  28. Ham YH, Jason Chan KK, Chan W. Thioproline serves as an efficient antioxidant protecting human cells from oxidative stress and improves cell viability. Chem Res Toxicol. 2020 Jul 20;33(7):1815-1821. doi: 10.1021/acs.chemrestox.0c00055. Epub 2020 Apr 30. PMID: 32299210.
  29. Wang XK, Sun T, Li YJ, Wang YH, Li YJ, Yang LD, Feng D, Zhao MG, Wu YM. A novel thiazolidinediones ATZD2 rescues memory deficits in a rat model of type 2 diabetes through antioxidant and antiinflammation. Oncotarget. 2017 Nov 18;8(64):107409-107422. doi: 10.18632/oncotarget.22467. PMID: 29296174; PMCID: PMC5746076.
  30. Sadashiva CT, Chandra JN, Kavitha CV, Thimmegowda A, Subhash MN, Rangappa KS. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models. Eur J Med Chem. 2009 Dec;44(12):4848-4854. doi: 10.1016/j.ejmech.2009.07.026. Epub 2009 Aug 6. PMID: 19717214.
  31. Zhao L, Huang W, Liu H, Wang L, Zhong W, Xiao J, Hu Y, Li S. FK506-binding protein ligands: Structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates. J Med Chem. 2006 Jul 13;49(14):4059-4071. doi: 10.1021/jm0502384. PMID: 16821768.
  32. Kumar B, Mantha Kumar. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC advances. 2016;6(48):42660-42683. https://tinyurl.com/4nwwya8p
  33. Gandini A, Bartolini M, Tedesco D, Martinez-Gonzalez L, Roca C, Campillo NE, Zaldivar-Diez J, Perez C, Zuccheri G, Miti A, Feoli A, Castellano S, Petralla S, Monti B, Rossi M, Moda F, Legname G, Martinez A, Bolognesi ML. Tau-centric multitarget approach for alzheimer's disease: development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J Med Chem. 2018 Sep 13;61(17):7640-7656. doi: 10.1021/acs.jmedchem.8b00610. Epub 2018 Aug 24. PMID: 30078314.
  34. Kaplan J, Nowell M, Chima R, Zingarelli B. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun. 2014 Jul;20(5):519-28. doi: 10.1177/1753425913501565. Epub 2013 Sep 12. PMID: 24029145; PMCID: PMC3954463.
  35. Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J Pineal Res. 2015 Jan;58(1):71-85. doi: 10.1111/jpi.12194. Epub 2014 Dec 9. PMID: 25401971.
  36. Imran M, Al Kury LT, Nadeem H, Shah FA, Abbas M, Naz S, Khan AU, Li S. Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules. 2020 Jan 8;10(1):108. doi: 10.3390/biom10010108. PMID: 31936383; PMCID: PMC7023260.
  37. Yin J, Valin KL, Dixon ML, Leavenworth JW. The role of microglia and macrophages in cns homeostasis, autoimmunity, and cancer. J Immunol Res. 2017;2017:5150678. doi: 10.1155/2017/5150678. Epub 2017 Dec 19. PMID: 29410971; PMCID: PMC5749282.
  38. Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010 Jan;120(1-3):245-248. doi: 10.1016/j.jad.2009.04.027. PMID: 19446343.
  39. Rao JS, Rapoport SI, Kim HW. Altered neuroinflammatory, arachidonic acid cascade and synaptic markers in postmortem Alzheimer's disease brain. Transl Psychiatry. 2011 Aug 16;1(8):e31. doi: 10.1038/tp.2011.27. Retraction in: Transl Psychiatry. 2017 May 9;7(5):e1127. PMID: 22832605; PMCID: PMC3309508.
  40. Ben Menachem-Zidon O, Goshen I, Kreisel T, Ben Menahem Y, Reinhartz E, Ben Hur T, Yirmiya R. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology. 2008 Aug;33(9):2251-2262. doi: 10.1038/sj.npp.1301606. Epub 2007 Nov 7. PMID: 17987063.
  41. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008 Jul;13(7):717-728. doi: 10.1038/sj.mp.4002055. Epub 2007 Aug 14. PMID: 17700577.
  42. Ehsanifar M, Montazeri, Rafati. Alzheimer’s disease-like neuropathology following exposure to ambient noise. J Biomed Res Environ Sci. 2021;2(11):1159-1162. https://tinyurl.com/yevheu6b
  43. Ali T. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. Journal of neuroinflammation. 2018;15(1):1-19. https://tinyurl.com/y5u66wft
  44. Eckardt MJ, File SE, Gessa GL, Grant KA, Guerri C, Hoffman PL, Kalant H, Koob GF, Li TK, Tabakoff B. Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res. 1998 Aug;22(5):998-1040. doi: 10.1111/j.1530-0277.1998.tb03695.x. PMID: 9726269.
  45. Reddy VD, Padmavathi P, Kavitha G, Saradamma B, Varadacharyulu N. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol Cell Biochem. 2013 Mar;375(1-2):39-47. doi: 10.1007/s11010-012-1526-1. Epub 2012 Dec 1. PMID: 23212448.
  46. Vallés SL, Blanco AM, Pascual M, Guerri C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 2004 Oct;14(4):365-371. doi: 10.1111/j.1750-3639.2004.tb00079.x. PMID: 15605983; PMCID: PMC8095743.
  47. Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-induced neurodegeneration and glial activation in the developing brain. Brain Sci. 2016 Aug 16;6(3):31. doi: 10.3390/brainsci6030031. PMID: 27537918; PMCID: PMC5039460.
  48. Al Kury LT, Zeb A, Abidin ZU, Irshad N, Malik I, Alvi AM, Khalil AAK, Ahmad S, Faheem M, Khan AU, Shah FA, Li S. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019 Aug 2;13:2715-2727. doi: 10.2147/DDDT.S207310. PMID: 31447548; PMCID: PMC6683968.
  49. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009 Mar;10(3):241-247. doi: 10.1038/ni.1703. PMID: 19221555; PMCID: PMC2820724.
  50. Gong Z, Pan J, Shen Q, Li M, Peng Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018 Aug 28;15(1):242. doi: 10.1186/s12974-018-1282-6. PMID: 30153825; PMCID: PMC6114292.
  51. Toma C, Higa N, Koizumi Y, Nakasone N, Ogura Y, McCoy AJ, Franchi L, Uematsu S, Sagara J, Taniguchi S, Tsutsui H, Akira S, Tschopp J, Núñez G, Suzuki T. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling. J Immunol. 2010 May 1;184(9):5287-5297. doi: 10.4049/jimmunol.0903536. Epub 2010 Mar 26. PMID: 20348425.
  52. Qiao Y, Wang P, Qi J, Zhang L, Gao C. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 2012 Apr 5;586(7):1022-1026. doi: 10.1016/j.febslet.2012.02.045. Epub 2012 Mar 8. PMID: 22569257.
  53. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013 Jun 27;38(6):1142-1153. doi: 10.1016/j.immuni.2013.05.016. PMID: 23809161; PMCID: PMC3730833.
  54. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015 Jun 5;97:55-74. doi: 10.1016/j.ejmech.2015.04.040. Epub 2015 Apr 22. PMID: 25942353.
  55. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem. 2019 Sep 15;178:687-704. doi: 10.1016/j.ejmech.2019.06.010. Epub 2019 Jun 13. PMID: 31228811.
  56. Van der Schyf CJ. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert Rev Clin Pharmacol. 2011 May;4(3):293-298. doi: 10.1586/ecp.11.13. PMID: 22114774.
  57. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017 Jan;360(1):201-205. doi: 10.1124/jpet.116.237503. Epub 2016 Oct 17. PMID: 27754930; PMCID: PMC5193071.
  58. Hassanzadeh K, Rahimmi. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: could targeting these pathways write a good ending? Journal of cellular physiology. 2019;234(1):23-32. https://tinyurl.com/3sd5ssn9
  59. He J, Zhu G, Wang G, Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid Med Cell Longev. 2020 Jul 3;2020:6137521. doi: 10.1155/2020/6137521. PMID: 32714488; PMCID: PMC7354668.
  60. Gu F, Zhu M, Shi J, Hu Y, Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008 Jul 25;440(1):44-48. doi: 10.1016/j.neulet.2008.05.050. Epub 2008 May 18. PMID: 18539391.
  61. Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci. 2020 Sep 28;21(19):7152. doi: 10.3390/ijms21197152. PMID: 32998277; PMCID: PMC7582347.
  62. Bayram FEÖ. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids. European journal of medicinal chemistry. 2016;114:337-344. https://tinyurl.com/2p8schec
  63. Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci. 2007 Jan;25(2):541-550. doi: 10.1111/j.1460-9568.2006.05298.x. PMID: 17284196.
  64. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008 Aug;9(8):857-865. doi: 10.1038/ni.1636. Epub 2008 Jul 11. PMID: 18604209; PMCID: PMC3101478.
  65. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013 Jan;62(1):194-204. doi: 10.2337/db12-0420. Epub 2012 Oct 18. PMID: 23086037; PMCID: PMC3526026.
  66. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014 Mar 1;20(7):1126-1167. doi: 10.1089/ars.2012.5149. Epub 2013 Oct 22. PMID: 23991888; PMCID: PMC3929010.
  67. Samuelsson M, Fisher L, Iverfeldt K. beta-Amyloid and interleukin-1beta induce persistent NF-kappaB activation in rat primary glial cells. Int J Mol Med. 2005 Sep;16(3):449-453. PMID: 16077954.
  68. Shah FA, Kury LA, Li T, Zeb A, Koh PO, Liu F, Zhou Q, Hussain I, Khan AU, Jiang Y, Li S. Polydatin attenuates neuronal loss via reducing neuroinflammation and oxidative stress in rat mcao models. Front Pharmacol. 2019 Jun 26;10:663. doi: 10.3389/fphar.2019.00663. PMID: 31293416; PMCID: PMC6606791.
  69. Bortolato B, Carvalho AF, Soczynska JK, Perini GI, McIntyre RS. The involvement of tnf-α in cognitive dysfunction associated with major depressive disorder: An opportunity for domain specific treatments. Curr Neuropharmacol. 2015;13(5):558-576. doi: 10.2174/1570159x13666150630171433. PMID: 26467407; PMCID: PMC4761629.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search