Covid-19 Research

Mini Review

OCLC Number/Unique Identifier: 9385855305

Placental Exosomes Trigger Maternal Inflammation and Vascular Dysfunction in Preeclampsia

Medicine Group    Start Submission

Olufunke O Arishe*, Abbi Lane-Cordova and R. Clinton Webb

Volume2-Issue12
Dates: Received: 2021-12-17 | Accepted: 2021-12-20 | Published: 2021-12-21
Pages: 1211-1215

Abstract

Preeclampsia is a pregnancy-specific disease associated with inadequate placental formation, chronic inflammation, and maternal vascular dysfunction. Preeclampsia affects about 5-8% of pregnant women and it is a prevalent cause of maternal mortality. The level and composition of exosomes in the maternal circulation are altered in preeclampsia, and studies have shown that the major source of this greater level of exosomes is the placenta. We propose that exosomal contents from the placenta trigger maternal inflammation and vascular dysfunction, thereby exacerbating the disease progression. This mini-review will focus on the content of placental exosomes and how they could contribute to the development of preeclampsia.

FullText HTML FullText PDF DOI: 10.37871/jbres1374


Certificate of Publication




Copyright

© 2021 Arishe OO, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Arishe OO, Lane-Cordova A, Webb RC. Placental Exosomes Trigger Maternal Inflammation and Vascular Dysfunction in Preeclampsia. J Biomed Res Environ Sci. 2021 Dec 21; 2(12): 1211-1215. doi: 10.37871/jbres1374, Article ID: JBRES1374, Available at: https://www.jelsciences.com/articles/jbres1374.pdf


Subject area(s)

References


  1. Chesley LC. Diagnosis of preeclampsia. Obstet Gynecol. 1985;65(3):423-425. https://tinyurl.com/2p8hvs4a
  2. Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and uterine blood flow in preeclampsia: The role of mechanosensing piezo 1 ion channels. Am J Hypertens. 2020 Jan 1;33(1):1-9. doi: 10.1093/ajh/hpz158. PMID: 31545339; PMCID: PMC7768673.
  3. Ducloy-Bouthors AS. Hémostase at preeclampsia [clotting disorders and preeclampsia]. Ann Fr Anesth Reanim. 2010 May;29(5):e121-134. French. doi: 10.1016/j.annfar.2010.03.012. Epub 2010 May 15. PMID: 20478689.
  4. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Hypertension. 2018 Jun;71(6):1269-1324. doi: 10.1161/HYP.0000000000000066. Epub 2017 Nov 13. Erratum in: Hypertension. 2018 Jun;71(6):e136-e139. Erratum in: Hypertension. 2018 Sep;72(3):e33. PMID: 29133354.
  5. Perry H, Khalil A, Thilaganathan B. Preeclampsia and the cardiovascular system: An update. Trends Cardiovasc Med. 2018 Nov;28(8):505-513. doi: 10.1016/j.tcm.2018.04.009. Epub 2018 May 15. PMID: 29884568.
  6. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: An endothelial cell disorder. Am J Obstet Gynecol. 1989 Nov;161(5):1200-1204. doi: 10.1016/0002-9378(89)90665-0. PMID: 2589440.
  7. Harskamp RE, Zeeman GG. Preeclampsia: At risk for remote cardiovascular disease. Am J Med Sci. 2007 Oct;334(4):291-295. doi: 10.1097/MAJ.0b013e3180a6f094. PMID: 18030186.
  8. Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week. J Am Coll Cardiol. 2019 Apr 30;73(16):2106-2116. doi: 10.1016/j.jacc.2018.12.092. PMID: 31023435.
  9. Valente AM, Bhatt DL, Cordova A. Pregnancy as a cardiac stress test. J Am Coll Cardiol. 2020;76(1):68-71. https://tinyurl.com/2cjuxaxh
  10. Roberts JM, Hubel CA. The two stage model of preeclampsia: Variations on the theme. Placenta. 2009 Mar;30 Suppl A(Suppl A):S32-37. doi: 10.1016/j.placenta.2008.11.009. Epub 2008 Dec 13. PMID: 19070896; PMCID: PMC2680383.
  11. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986 Oct;93(10):1049-1059. doi: 10.1111/j.1471-0528.1986.tb07830.x. PMID: 3790464.
  12. Alexander BT, Llinas MT, Kruckeberg WC, Granger JP. L-arginine attenuates hypertension in pregnant rats with reduced uterine perfusion pressure. Hypertension. 2004 Apr;43(4):832-836. doi: 10.1161/01.HYP.0000119192.32360.a9. Epub 2004 Feb 9. PMID: 14769812.
  13. Casper FW, Seufert RJ. Atrial natriuretic peptide (ANP) in preeclampsia-like syndrome in a rat model. Exp Clin Endocrinol Diabetes. 1995;103(5):292-296. doi: 10.1055/s-0029-1211368. PMID: 8536057.
  14. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011 Dec;2(12):1097-1105. doi: 10.1177/1947601911423031. PMID: 22866201; PMCID: PMC3411125.
  15. Pant V, Yadav BK, Sharma J. A cross sectional study to assess the sFlt-1:PlGF ratio in pregnant women with and without preeclampsia. BMC Pregnancy Childbirth. 2019;19(1):1-8. https://tinyurl.com/3xnre6w9
  16. Seki H. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia. Acta Obstet Gynecol Scand. 2014 Oct;93(10):959-964. doi: 10.1111/aogs.12473. Epub 2014 Sep 17. PMID: 25139038.
  17. Lecarpentier E, Tsatsaris V. Angiogenic balance (sFlt-1/PlGF) and preeclampsia. Ann Endocrinol (Paris). 2016 Jun;77(2):97-100. doi: 10.1016/j.ando.2016.04.007. Epub 2016 Apr 26. PMID: 27130072.
  18. Shahul S, Medvedofsky D, Wenger JB, Nizamuddin J, Brown SM, Bajracharya S, Salahuddin S, Thadhani R, Mueller A, Tung A, Lang RM, Arany Z, Talmor D, Karumanchi SA, Rana S. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension. 2016 Jun;67(6):1273-1280. doi: 10.1161/HYPERTENSIONAHA.116.07252. Epub 2016 Apr 25. PMID: 27113052.
  19. Powers RW, Jeyabalan A, Clifton RG, Van Dorsten P, Hauth JC, Klebanoff MA, Lindheimer MD, Sibai B, Landon M, Miodovnik M; Eunice Kennedy Shriver National Institute of Child Health Human Development Maternal-Fetal Medicine Units Network. Soluble fms-Like tyrosine kinase 1 (sFlt1), endoglin and Placental Growth Factor (PlGF) in preeclampsia among high risk pregnancies. PLoS One. 2010 Oct 11;5(10):e13263. doi: 10.1371/journal.pone.0013263. PMID: 20948996; PMCID: PMC2952583.
  20. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med. 1999 Dec;222(3):222-235. doi: 10.1046/j.1525-1373.1999.d01-139.x. PMID: 10601881.
  21. McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: Novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014 Jan 15;306(2):H184-196. doi: 10.1152/ajpheart.00328.2013. Epub 2013 Oct 25. PMID: 24163075; PMCID: PMC3920129.
  22. Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008 Apr;8(4):279-289. doi: 10.1038/nri2215. Epub 2008 Mar 14. PMID: 18340345; PMCID: PMC2763408.
  23. Patni S, Wynen LP, Seager AL, Morgan G, White JO, Thornton CA. Expression and activity of Toll-like receptors 1-9 in the human term placenta and changes associated with labor at term. Biol Reprod. 2009 Feb;80(2):243-248. doi: 10.1095/biolreprod.108.069252. Epub 2008 Sep 24. PMID: 18815357.
  24. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994 Jul;171(1):158-164. doi: 10.1016/0002-9378(94)90463-4. PMID: 8030692.
  25. Tinsley JH, Chiasson VL, Mahajan A, Young KJ, Mitchell BM. Toll-like receptor 3 activation during pregnancy elicits preeclampsia-like symptoms in rats. Am J Hypertens. 2009 Dec;22(12):1314-1319. doi: 10.1038/ajh.2009.185. Epub 2009 Sep 24. PMID: 19779466.
  26. Nellimarla S, Mossman KL. Extracellular dsRNA: its function and mechanism of cellular uptake. J Interferon Cytokine Res. 2014 Jun;34(6):419-426. doi: 10.1089/jir.2014.0002. PMID: 24905198.
  27. de Bouteiller O, Merck E, Hasan UA, Hubac S, Benguigui B, Trinchieri G, Bates EE, Caux C. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem. 2005 Nov 18;280(46):38133-38145. doi: 10.1074/jbc.M507163200. Epub 2005 Sep 6. PMID: 16144834.
  28. Tinsley JH, Chiasson VL, Mahajan A, Young KJ, Mitchell BM. Toll-like receptor 3 activation during pregnancy elicits preeclampsia-like symptoms in rats. Am J Hypertens. 2009 Dec;22(12):1314-1319. doi: 10.1038/ajh.2009.185. Epub 2009 Sep 24. PMID: 19779466.
  29. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb 7;367(6478):eaau6977. doi: 10.1126/science.aau6977. PMID: 32029601; PMCID: PMC7717626.
  30. Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981 Jul 6;645(1):63-70. doi: 10.1016/0005-2736(81)90512-5. PMID: 6266476.
  31. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015 May 14;4:27066. doi: 10.3402/jev.v4.27066. PMID: 25979354; PMCID: PMC4433489.
  32. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013 Jan;27(1):31-39. doi: 10.1016/j.blre.2012.12.002. Epub 2012 Dec 20. PMID: 23261067.
  33. Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, Urbanelli L, Buratta S. Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells. 2021 Jul 12;10(7):1763. doi: 10.3390/cells10071763. PMID: 34359933; PMCID: PMC8306565.
  34. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014 Aug 4;3. doi: 10.3402/jev.v3.24641. PMID: 25143819; PMCID: PMC4122821.
  35. Nazimek K, Bryniarski K, Santocki M, Ptak W. Exosomes as mediators of intercellular communication: Clinical implications. Pol Arch Med Wewn. 2015;125(5):370-380. doi: 10.20452/pamw.2840. Epub 2015 May 15. PMID: 25978300.
  36. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019 Apr 2;18(1):75. doi: 10.1186/s12943-019-0991-5. PMID: 30940145; PMCID: PMC6444571.
  37. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019 Apr;1871(2):455-468. doi: 10.1016/j.bbcan.2019.04.004. Epub 2019 Apr 30. PMID: 31047959; PMCID: PMC6542596.
  38. Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 2019 Jul;45:1-12. doi: 10.1016/j.drup.2019.07.003. Epub 2019 Jul 23. PMID: 31369918.
  39. Whiteside TL. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv Clin Chem. 2016;74:103-141. doi: 10.1016/bs.acc.2015.12.005. Epub 2016 Apr 7. PMID: 27117662; PMCID: PMC5382933.
  40. Ochiai-Homma F, Kuribayashi-Okuma E, Tsurutani Y, Ishizawa K, Fujii W, Odajima K, Kawagoe M, Tomomitsu Y, Murakawa M, Asakawa S, Hirohama D, Nagura M, Arai S, Yamazaki O, Tamura Y, Fujigaki Y, Nishikawa T, Shibata S. Characterization of pendrin in urinary extracellular vesicles in a rat model of aldosterone excess and in human primary aldosteronism. Hypertens Res. 2021 Dec;44(12):1557-1567. doi: 10.1038/s41440-021-00710-5. Epub 2021 Jul 29. PMID: 34326480; PMCID: PMC8645477.
  41. Qian X, Xie F, Wei H, Cui D. Identification of Key Circulating Exosomal microRNAs in Gastric Cancer. Front Oncol. 2021 Jul 16;11:693360. doi: 10.3389/fonc.2021.693360. PMID: 34336682; PMCID: PMC8323470.
  42. Kim J, Shim JS, Han BH, Kim HJ, Park J, Cho IJ, Kang SG, Kang JY, Bong KW, Choi N. Hydrogel-based Hybridization Chain Reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens Bioelectron. 2021 Nov 15;192:113504. doi: 10.1016/j.bios.2021.113504. Epub 2021 Jul 16. PMID: 34298498.
  43. Wen J, Yang T, Mallouk N, Zhang Y, Li H, Lambert C, Li G. Urinary Exosomal CA9 mRNA as a novel liquid biopsy for molecular diagnosis of bladder cancer. Int J Nanomedicine. 2021 Jul 14;16:4805-4811. doi: 10.2147/IJN.S312322. PMID: 34285483; PMCID: PMC8286733.
  44. Cho NJ, Kim DY, Kwon SH, Ha TW, Kim HK, Lee MR, Chun SW, Park S, Lee EY, Gil HW. Urinary exosomal microRNA profiling in type 2 diabetes patients taking dipeptidyl peptidase-4 inhibitor compared with sulfonylurea. Kidney Res Clin Pract. 2021 Sep;40(3):383-391. doi: 10.23876/j.krcp.21.015. Epub 2021 Jul 7. PMID: 34233436; PMCID: PMC8476296.
  45. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016 Apr 1;126(4):1208-1215. doi: 10.1172/JCI81135. Epub 2016 Apr 1. PMID: 27035812; PMCID: PMC4811149.
  46. Lee JH, Shim YR, Seo W, Kim MH, Choi WM, Kim HH, Kim YE, Yang K, Ryu T, Jeong JM, Choi HG, Eun HS, Kim SH, Mun H, Yoon JH, Jeong WI. Mitochondrial double-stranded rna in exosome promotes interleukin-17 production through toll-like receptor 3 in alcohol-associated liver injury. Hepatology. 2020 Aug;72(2):609-625. doi: 10.1002/hep.31041. Epub 2020 May 8. PMID: 31849082; PMCID: PMC7297661.
  47. Otani K, Yokoya M, Kodama T, Hori K, Matsumoto K, Okada M, Yamawaki H. Plasma exosomes regulate systemic blood pressure in rats. Biochem Biophys Res Commun. 2018 Sep 5;503(2):776-783. doi: 10.1016/j.bbrc.2018.06.075. Epub 2018 Jun 22. PMID: 29913142.
  48. Redman CW, Sargent IL. Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta. 2008 Mar;29 Suppl A:S73-77. doi: 10.1016/j.placenta.2007.11.016. Epub 2008 Jan 14. PMID: 18192006.
  49. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, Rice GE, Salomon C. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S173-181. doi: 10.1016/j.ajog.2015.07.001. PMID: 26428497.
  50. Pillay P, Moodley K, Moodley J, Mackraj I. Placenta-derived exosomes: Potential biomarkers of preeclampsia. Int J Nanomedicine. 2017 Oct 31;12:8009-8023. doi: 10.2147/IJN.S142732. PMID: 29184401; PMCID: PMC5673050.
  51. Ermini L, Ausman J, Melland-Smith M, Yeganeh B, Rolfo A, Litvack ML. A single sphingomyelin species promotes exosomal release of endoglin into the maternal circulation in preeclampsia. Sci Reports. 2017;7(1):1–16. https://tinyurl.com/c3cue6x7
  52. Chang X, Yao J, He Q, Liu M, Duan T, Wang K. Exosomes from women with preeclampsia induced vascular dysfunction by delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to endothelial cells. Hypertension. 2018 Dec;72(6):1381-1390. doi: 10.1161/HYPERTENSIONAHA.118.11706. PMID: 30571229.
  53. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, Salomon C. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med. 2014 Aug 8;12:204. doi: 10.1186/1479-5876-12-204. PMID: 25104112; PMCID: PMC4283151.
  54. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr, Wallace K, LaMarca B. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016 Mar;130(6):409-419. doi: 10.1042/CS20150702. PMID: 26846579; PMCID: PMC5484393.
  55. Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract. 2013;22 Suppl 1(Suppl 1):8-19. doi: 10.1159/000354200. Epub 2013 Aug 15. PMID: 23949305; PMCID: PMC5586811.
  56. Rajakumar A, Cerdeira AS, Rana S, Zsengeller Z, Edmunds L, Jeyabalan A, Hubel CA, Stillman IE, Parikh SM, Karumanchi SA. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia. Hypertension. 2012 Feb;59(2):256-264. doi: 10.1161/HYPERTENSIONAHA.111.182170. Epub 2012 Jan 3. PMID: 22215706; PMCID: PMC3319764.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search