Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9382541471

Metal-Based Nanomaterials Incorporate with Ultrasound as Acceptable Approach towards Cancer Therapy

Biology Group    Start Submission

Xiaoxiao He, Shiyue Chen and Xiang Mao*

Volume2-Issue11
Dates: Received: 2021-11-15 | Accepted: 2021-11-19 | Published: 2021-11-20
Pages: 1101-1110

Abstract

Among current biological researches, there have a plenty of works related cancer therapy issues by using functional or pure-phased composites in non-invasive strategies. Especially in fabricating anticancer candidates, functional composites are divided into different sorts with different characteristics. Additionally, nanotechnology provides various approaches in utilizing composites’ functionality for cancer diagnostics and therapeutics. Compared with previous Photodynamic Therapy (PDT), Photo-Thermal Therapy (PTT), chemotherapy and radiotherapy, ultrasound is used to activate sonosensitizer to produce cytotoxic Reactive Oxygen Species (ROS) toward target cancer cells. In recent years, the form of Sonodynamic Therapy (SDT) has been making much effort to develop highly efficient metal based Nanomaterials (NMs) as sonosensitizers, which can efficiently generate ROS and has the advantages of deeper tissue penetration. However, the traditional sonosensitizers, such as porphyrins, hypericin, and curcumins suffer from complex synthesis, poor water solubility, and low tumor targeting efficacy. For contrasting this limitation, the metal based inorganic NMs show biocompatibility, controllable physicochemical properties, and ease of achieving multifunctional properties, which greatly expanded their application in SDT. In this review, we systematically summarize the metal based inorganic NMs as carrier of molecular sonosensitizers, and produce ROS under ultrasound. Moreover, the prospects of advanced metal based further materials application are also discussed.

FullText HTML FullText PDF DOI: 10.37871/jbres1354


Certificate of Publication




Copyright

© 2021 He X, et al. Distributed under Creative Commons CC-BY 4.0

How to cite this article

He X, Chen S, Mao X. Metal-Based Nanomaterials Incorporate with Ultrasound as Acceptable Approach towards Cancer Therapy. J Biomed Res Environ Sci. 2021 Nov 20; 2(11): 1101-1110. doi: 10.37871/jbres1354, Article ID: JBRES1354, Available at: https://www.jelsciences.com/articles/jbres1354.pdf


Subject area(s)

University/Institute

References


  1. Fan Y, Lin L, Yin F, Zhu Y, Shen M, Wang H, Du L, Mignani S, Majoral, Shi X. Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. Nano Today. 2020;33:100899. https://tinyurl.com/czby7cvh
  2. Zhang Y, Luo K, Gu Z. Functional dendritic polymer-based nanoscale vehicles for imaging-guided cancer therapy. Springer-Verlag. 2016. https://tinyurl.com/3t8jsx39
  3. Koziolová E, Goel S, Chytil P, Janoušková O, Barnhart T, Cai W, Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;30:10906-10918. https://tinyurl.com/c6scmp6p
  4. Feng L, Gai S, He F, Yang P, Zhao Y. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano. 2020 Jun 23;14(6):7245-7258. doi: 10.1021/acsnano.0c02458. Epub 2020 May 28. PMID: 32432848.
  5. Guarch P, López R, SerretSalse J, González LJ, Borras, Perez J. Basis for the toxicological evaluation of engineered nanomaterials. Rev Chil Infecto. 2014;31(1):9-22. https://tinyurl.com/uzsv8fe
  6. Bejarano I, Espino J, Paredes S, Ortiz Á, Lozano G, Pariente J, Rodríguez A. Apoptosis, ROS and calcium signaling in human spermatozoa: Relationship to infertility. In Tech. 2012. https://tinyurl.com/2fa255d5
  7. Long L, Chen, Xiong Y, Zou M, Deng Y, Chen L, Wang Z. Efficacy of high-intensity focused ultrasound ablation for adenomyosis therapy and sexual life quality. Int J Clin Exp Med. 2015;87:11701-11707. https://tinyurl.com/5byu8mtk
  8. Schmidt M, Fuchs M. Penetrability in model colloid-polymer mixtures. J Chem Phys. 2002;117:6308-6312. https://tinyurl.com/2dvk5jrh
  9. Sakuma G, Fukunaka Y, Matsushima H. Nucleation and growth of electrolytic gas bubbles under microgravity. Int J of Hydrog Energy. 2014;39:7638-7645. https://tinyurl.com/by2pskf9
  10. Greenwood GW, Foreman A, Rimmer D. The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile material. J Nucl Mater. 1959;1:305-324. https://tinyurl.com/spsb7xxh
  11. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007 Nov;3(11):1941-1949. doi: 10.1002/smll.200700378. PMID: 17963284.
  12. Broda J, Schmid G, Simon. U. Size and ligand-specific bioresponse of gold clusters and nanoparticles: challenges and perspectives. Springer Int Pub. 2013. https://tinyurl.com/yhthwaxr
  13. Emelianov S, Wilson K, Homan K. Nanocarriers for imaging and therapy applications. Curr Pharm Design. 2012. https://tinyurl.com/awy2vzjb
  14. Brazzale C, Canaparo R, Racca L, Foglietta F, Durando G, Fantozzi R, Caliceti P, Salmaso S, Serpe L. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine (Lond). 2016 Dec;11(23):3053-3070. doi: 10.2217/nnm-2016-0293. Epub 2016 Sep 15. PMID: 27627904.
  15. Grant CD, Schwartzberg AM, Norman TJ Jr, Zhang JZ. Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. J Am Chem Soc. 2003 Jan 15;125(2):549-553. doi: 10.1021/ja028532y. PMID: 12517170.
  16. Guillet Y, Rashidi, Prota D, Palpanta B. Gold nanoparticle assemblies: interplay between thermal effects and optical response. Gold Bull. 2008;41:341-348. https://tinyurl.com/2ytx2dnw
  17. Sazgarnia A, Shanei A, Taheri AR, Meibodi NT, Eshghi H, Attaran N, Shanei MM. Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. J Ultrasound Med. 2013 Mar;32(3):475-483. doi: 10.7863/jum.2013.32.3.475. PMID: 23443188.
  18. Sazgarnia A, Shanei A. Evaluation of acoustic cavitation in terephthalic acid solutions containing gold nanoparticles by the spectrofluorometry method. Int J Photoenergy. 2012:1-5. https://tinyurl.com/drcnn2rx
  19. Deng CX, Xu Q, Apfel RE, Holland CK. Inertial cavitation produced by pulsed ultrasound in controlled host media. J Acoust Soc Am. 1996 Aug;100(2 Pt 1):1199-1208. doi: 10.1121/1.416304. PMID: 8759969.
  20. Kosheleva OK, Lai TC, Chen NG, Hsiao M, Chen CH. Selective killing of cancer cells by nanoparticle-assisted ultrasound. J Nanobiotechnology. 2016;14(1):46. https://tinyurl.com/2xex22jk
  21. Harada A, Ono M, Yuba E, Kono K. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci. 2013;1(1):65–73. https://tinyurl.com/4254a23s
  22. Nitta , Kaya A, Yamane T, Hyodo K, Okada M, Furuzono T. Fundamental Study on Activation of Aminated Titanium Dioxide Composite by Low-Intensity Focused Ultrasound Irradiation in Anti-Infective Catheter System. Jpn J Appl Phys. 2010;49. https://tinyurl.com/2dksrsr8
  23. Paleologou A, Marakas H, Xekoukoulotakis N, Moya A, Vergara Y, Kalogerakis N. Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal Today. 2007;129:136-142. https://tinyurl.com/pabjrupm
  24. Ogino C, Shibata N, Sasai R, Takaki K, Miyachi Y, Kuroda S. Construction of protein-modified TiO2 nanoparticles for use with ultrasound irradiation in a novel cell injuring method. Bioorg Med Chem Lett. 2010;20(17):5320–5325. https://tinyurl.com/e59yw5wh
  25. Ninomiya K, Noda K, Ogino C, Kuroda S, Shimizu N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason Sonochem. 2014 Jan;21(1):289-94. doi: 10.1016/j.ultsonch.2013.05.005. Epub 2013 May 24. PMID: 23746399.
  26. Ninomiya K, Fukuda A, Ogino C, Shimizu N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason Sonochem. 2014 Sep;21(5):1624-8. doi: 10.1016/j.ultsonch.2014.03.010. Epub 2014 Mar 19. PMID: 24717690.
  27. Li C, Li F, Zhang Y, Zhang W, Zhang XE, Wang Q. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano. 2015 Dec 22;9(12):12255-12263. doi: 10.1021/acsnano.5b05503. Epub 2015 Oct 28. PMID: 26496067.
  28. Li C, Yang XQ, An J, Cheng K, Hou XL, Zhang XS, Hu YG, Liu B, Zhao YD. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics. 2020 Jan 1;10(2):867-879. doi: 10.7150/thno.37930. PMID: 31903156; PMCID: PMC6929970.
  29. Deepagan VG, You DG, Um W, Ko H, Kwon S, Choi KY, Yi GR, Lee JY, Lee DS, Kim K, Kwon IC, Park JH. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016 Oct 12;16(10):6257-6264. doi: 10.1021/acs.nanolett.6b02547. Epub 2016 Oct 3. PMID: 27643533.
  30. Seh ZW, Liu S, Zhang SY, Shah KW, Han MY. Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chem Commun (Camb). 2011;47(23):6689–6691. https://tinyurl.com/j4b9844u
  31. Gao F, He G, Yin H, Chen J, Liu Y, Lan C. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nano. 2019;11(5):2374–2384. https://tinyurl.com/4nkuk3hc
  32. Cao Y, Wu T, Wenhao D, Haifeng D, Zhang X. TiO2 nanosheets with the au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chemistry of Materials. 2019;31:9105-9114. https://tinyurl.com/k6rcdfbk
  33. Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N, Kubota Y, Terasaka S, Houkin K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem. 2011 Sep;18(5):1197-1204. doi: 10.1016/j.ultsonch.2010.12.017. Epub 2010 Dec 31. PMID: 21257331.
  34. Ma A, Chen H, Cui Y, Luo Z, Liang R, Wu Z. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small. 2019;15(5). https://tinyurl.com/2z49k56n
  35. Pan X, Bai L, Wang H, Wu Q, Wang H, Liu S. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater. 2018;30(23):e1800180. https://tinyurl.com/2pbkmh2p
  36. Ahamed M, Alhadlaq HA, Khan MM, Akhtar MJ. Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanopart Res. 2013;15(1):1-11. https://tinyurl.com/wt5hj75b
  37. Bakhshi H, Azari MM, Shokuhfar A. A facile approach for obtaining NiFe2O4@C core-shell nanoparticles and their magnetic properties assessment. Diam Relat Mater. 2020;110:108159. https://tinyurl.com/4dnb6twm
  38. Galvao WS, Freire RM, Ribeiro TS, Vasconcelos IF. Cubic superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating. J Nano Res. 2014;16(12):1-10. https://tinyurl.com/yp38hhf7
  39. Cheng Y, Lu H , Yang F , Zhang Y , Dong H . Biodegradable FeWOx nanoparticles for CT/MR imaging-guided synergistic photothermal, photodynamic, and chemodynamic therapy. Nanoscale. 2021 Feb 7;13(5):3049-3060. doi: 10.1039/d0nr07215j. Epub 2021 Jan 29. PMID: 33514969.
  40. Han X, Huang J, Jing X, Yang D, Lin H, Wang Z. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-ii biowindow. ACS Nano. 2018;12(5):4545–4555. https://tinyurl.com/6ahhvyw
  41. Wang, Huang J, Zhou W, Zhao J, Peng Q, Zhang L. Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy. J Nano. 2021;19(1):87. https://tinyurl.com/banjmbtu
  42. Gong F, Cheng L,Yang N, Betzer O, Feng L, Zhou. Ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv Mater. 2019;31(23):e1900730. https://tinyurl.com/jffwb3nj
  43. Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10(2):86-115. doi: 10.2174/1872210510999160517102102. PMID: 27502388.
  44. Xu F, Zhu J, Lin L, Zhang C, Sun W, Fan Y, Yin F, van Hest JCM, Wang H, Du L, Shi X. Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy. Theranostics. 2020 Mar 15;10(10):4349-4358. doi: 10.7150/thno.43402. PMID: 32292499; PMCID: PMC7150492.
  45. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington). 2016 Apr;19(3):157-168. doi: 10.1016/j.mattod.2015.08.022. PMID: 27524934; PMCID: PMC4981486.
  46. Bleyer WA. The clinical pharmacology of methotrexate: New applications of an old drug. Cancer. 1978 Jan;41(1):36-51. doi: 10.1002/1097-0142(197801)41:1<36::aid-cncr2820410108>3.0.co;2-i. PMID: 342086.
  47. Zhao X, Harris JM. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein. J Pharm Sci. 1998 Nov;87(11):1450-1458. doi: 10.1021/js980065o. PMID: 9811505.
  48. Tartaj P, Serna CJ. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc. 2003 Dec 24;125(51):15754-15755. doi: 10.1021/ja0380594. PMID: 14677960.
  49. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv drug deliver Rev. 2011;63(1-2):24-46. https://tinyurl.com/kfdazkf9
  50. Fard AE, Zarepour A, Zarrabi A, Shanei A, Salehi H. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J Magn Mater. 2015;394:44-49. https://tinyurl.com/2yt6xxs7
  51. Shen Y, Pi Z, Yan F, Yeh CK, Zeng X, Diao X, Hu Y, Chen S, Chen X, Zheng H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int J Nanomedicine. 2017 Aug 9;12:5613-5629. doi: 10.2147/IJN.S136401. PMID: 28848341; PMCID: PMC5557914.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search