Covid-19 Research

Review Article

OCLC Number/Unique Identifier: 9227645041

Research Progress on Association between Early-Life Exposure to Phthalates and Childhood Asthma

Medicine Group    Start Submission

Zhang Rong-Hui-Nan*

Volume2-Issue8
Dates: Received: 2021-08-19 | Accepted: 2021-08-23 | Published: 2021-08-25
Pages: 690-695

Abstract

Phthalates (Phthalic acid esters, PAEs) as a common industrial products, a growing body of scientific evidences indicate that exposure to PAEs in early life has a potential harmful effect on the growth and development of organisms in later life, among these hazards, exposure to PAEs widely may increase the risk of asthma in children, which has attracted more and more attention. This article introduced the reasons and effects of PAEs exposure in early life, the relationships between early-life PAEs exposure and childhood asthma from the perspectives of epidemiological and animal studies and the underlying mechanisms of action.

FullText HTML FullText PDF DOI: 10.37871/jbres1298


Certificate of Publication




Copyright

© 2021 Rong-Hui-Nan Z. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Rong-Hui-Nan Z. Research Progress on Association between Early-Life Exposure to Phthalates and Childhood Asthma. J Biomed Res Environ Sci. 2021 Aug 25; 2(8): 690-695. doi: 10.37871/jbres1298, Article ID: JBRES1298, Available at: https://www.jelsciences.com/articles/jbres1298.pdf


Subject area(s)

University/Institute

References


  1. Hasegawa T, Koya T, Sakagami T, Kagamu H, Arakawa M, Gejyo F, Narita I, Suzuki E; Niigata Asthma Treatment Study Group. The Asthma Control Test, Japanese version (ACT-J) as a predictor of Global Initiative for Asthma (GINA) guideline-defined asthma control: analysis of a questionnaire-based survey. Allergol Int. 2013 Sep;62(3):323-30. doi: 10.2332/allergolint.13-OA-0535. Epub 2013 Jun 25. PMID: 23793506.
  2. Ross KR, Gupta R, DeBoer MD, Zein J, Phillips BR, Mauger DT, Li C, Myers RE, Phipatanakul W, Fitzpatrick AM, Ly NP, Bacharier LB, Jackson DJ, Celedón JC, Larkin A, Israel E, Levy B, Fahy JV, Castro M, Bleecker ER, Meyers D, Moore WC, Wenzel SE, Jarjour NN, Erzurum SC, Teague WG, Gaston B. Severe asthma during childhood and adolescence: A longitudinal study. J Allergy Clin Immunol. 2020 Jan;145(1):140-146.e9. doi: 10.1016/j.jaci.2019.09.030. Epub 2019 Oct 14. PMID: 31622688.
  3. Resztak JA, Farrell AK, Mair-Meijers H, Alazizi A, Wen X, Wildman DE, Zilioli S, Slatcher RB, Pique-Regi R, Luca F. Psychosocial experiences modulate asthma-associated genes through gene-environment interactions. Elife. 2021 Jun 18;10:e63852. doi: 10.7554/eLife.63852. PMID: 34142656; PMCID: PMC8282343.
  4. Levin ME, Botha M, Basera W, Facey-Thomas HE, Gaunt B, Gray CL, Kiragu W, Ramjith J, Watkins A, Genuneit J. Environmental factors associated with allergy in urban and rural children from the South African Food Allergy (SAFFA) cohort. J Allergy Clin Immunol. 2020 Jan;145(1):415-426. doi: 10.1016/j.jaci.2019.07.048. Epub 2019 Oct 10. PMID: 31606483.
  5. Alfardan AS, Nadeem A, Ahmad. Plasticizer, di(2-ethylhexyl)phthalate (DEHP) enhances cockroach allergen extract-driven airway inflammation by enhancing pulmonary Th2 as well as Th17 immune responses in mice[J]. Environmental Research. 2018:164. https://tinyurl.com/94y5n3bn
  6. Hwang YH, Paik MJ, Yee ST. Diisononyl phthalate induces asthma via modulation of Th1/Th2 equilibrium. Toxicol Lett. 2017 Apr 15;272:49-59. doi: 10.1016/j.toxlet.2017.03.014. Epub 2017 Mar 12. PMID: 28300662.
  7. Maestre-Batlle D, Huff RD, Schwartz C, Alexis NE, Tebbutt SJ, Turvey S, Bølling AK, Carlsten C. Dibutyl Phthalate Augments Allergen-induced Lung Function Decline and Alters Human Airway Immunology. A Randomized Crossover Study. Am J Respir Crit Care Med. 2020 Sep 1;202(5):672-680. doi: 10.1164/rccm.201911-2153OC. PMID: 32320637.
  8. Hou H, Min Y, Liu X, Wang P, Zhou Z, Liu D. Occurrence and migration of phthalates in adhesive materials to fruits and vegetables. J Hazard Mater. 2021 Jun 2;418:126277. doi: 10.1016/j.jhazmat.2021.126277. Epub ahead of print. PMID: 34118542.
  9. Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. Environ Int. 2021 Jan;146:106228. doi: 10.1016/j.envint.2020.106228. Epub 2020 Nov 4. PMID: 33157377.
  10. Jessica L, Alexandra M, Thomas F, Karin. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women. Environmental health perspectives, 2016;124(3). https://tinyurl.com/x9479m9s
  11. Arbuckle TE, Fisher M, MacPherson S, Lang C, Provencher G, LeBlanc A, Hauser R, Feeley M, Ayotte P, Neisa A, Ramsay T, Tawagi G. Maternal and early life exposure to phthalates: The Plastics and Personal-care Products use in Pregnancy (P4) study. Sci Total Environ. 2016 May 1;551-552:344-56. doi: 10.1016/j.scitotenv.2016.02.022. Epub 2016 Feb 13. PMID: 26878646.
  12. Miller MD. Differences Between Children and Adults: Implications for Risk Assessment at California EPA[J]. International Journal of Toxicology. 2002;21(5). https://tinyurl.com/e2enssz6
  13. Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children’s health. Environ Health Perspect. 2000 Jun;108 Suppl 3(Suppl 3):451-5. doi: 10.1289/ehp.00108s3451. PMID: 10852844; PMCID: PMC1637810.
  14. Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ. 2019 Aug 2;7:e7429. doi: 10.7717/peerj.7429. PMID: 31396457; PMCID: PMC6681801.
  15. Shirangi A, Wright J, Blair EM, McEachan RR, Nieuwenhuijsen MJ. Occupational chemical exposures in pregnancy and fetal growth: evidence from the Born in Bradford Study. Scand J Work Environ Health. 2020 Jul 1;46(4):417-428. doi: 10.5271/sjweh.3878. Epub 2020 Jan 23. PMID: 31970422.
  16. Zhang Q, Sun Y, Zhang Q, Hou J, Wang P, Kong X, Sundell J. Phthalate exposure in Chinese homes and its association with household consumer products. Sci Total Environ. 2020 Jun 1;719:136965. doi: 10.1016/j.scitotenv.2020.136965. Epub 2020 Feb 5. PMID: 32120090.
  17. Johnk C, Host A, Husby S. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environmental Health. 2020;19(Part 1). https://tinyurl.com/5582c5z4
  18. Adgent MA, Carroll KN, Hazlehurst MF, Loftus CT, Szpiro Karr CJ, Barrett ES, LeWinn KZ, Bush NR, Tylavsky FA, Kannan K, Sathyanarayana S. A combined cohort analysis of prenatal exposure to phthalate mixtures and childhood asthma. Environ Int. 2020 Oct;143:105970. doi: 10.1016/j.envint.2020.105970. Epub 2020 Jul 30. PMID: 32763629; PMCID: PMC7708520.
  19. Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, Jaakkola JJ, Wang SL; TMICS Group. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PLoS One. 2015 Apr 13;10(4):e0123309. doi: 10.1371/journal.pone.0123309. PMID: 25875379; PMCID: PMC4395154.
  20. Wang IJ, Karmaus WJ. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int J Environ Res Public Health. 2017 Feb 8;14(2):162. doi: 10.3390/ijerph14020162. PMID: 28208751; PMCID: PMC5334716.
  21. Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics. 2015 Mar 15;7(1):27. doi: 10.1186/s13148-015-0060-x. PMID: 25960783; PMCID: PMC4424541.
  22. Carrico C, Gennings C, Wheeler DC. Factor-Litvak P Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of agricultural, biological, and environmental statistics. 2015;20(1). https://tinyurl.com/b3m5zahn
  23. Musharaf I, Hinton M, Yi M, Dakshinamurti S. Hypoxic challenge of hyperoxic pulmonary artery myocytes increases oxidative stress due to impaired mitochondrial superoxide dismutase activity. Pulm Pharmacol Ther. 2018 Feb;48:195-202. doi: 10.1016/j.pupt.2017.12.003. Epub 2017 Dec 12. PMID: 29246840.
  24. Shrestha AK, Menon RT, Shivanna B. Leflunomide attenuates oxidative stress in fetal human lung endothelial cells via superoxide dismutase 2 and catalase. Biochem Biophys Res Commun. 2018 Sep 10;503(3):2009-2014. doi: 10.1016/j.bbrc.2018.07.149. Epub 2018 Aug 2. PMID: 30077371; PMCID: PMC6119491.
  25. Wei Choo CY, Yeh KW, Huang JL, Su KW, Tsai MH, Hua MC, Liao SL, Lai SH, Chen LC, Chiu CY. Oxidative stress is associated with atopic indices in relation to childhood rhinitis and asthma. J Microbiol Immunol Infect. 2021 Jun;54(3):466-473. doi: 10.1016/j.jmii.2020.01.009. Epub 2020 Feb 13. PMID: 32094074.
  26. Qin W, Deng T, Cui H, Zhang Q, Liu X, Yang X, Chen M. Exposure to diisodecyl phthalate exacerbated Th2 and Th17-mediated asthma through aggravating oxidative stress and the activation of p38 MAPK. Food Chem Toxicol. 2018 Apr;114:78-87. doi: 10.1016/j.fct.2018.02.028. Epub 2018 Feb 12. PMID: 29448086.
  27. Mesri Alamdari N, Mahdavi R, Roshanravan N, Lotfi Yaghin N, Ostadrahimi AR, Faramarzi E. A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Horm Metab Res. 2015 Jun;47(7):504-8. doi: 10.1055/s-0034-1384587. Epub 2014 Aug 15. PMID: 25126957.
  28. You H, Li R, Wei C. Thymic Stromal Lymphopoietin Neutralization Inhibits the Immune Adjuvant Effect of Di-(2-Ethylhexyl) Phthalate in Balb/c Mouse Asthma Model. PLoS ONE. 2017;11(7). https://tinyurl.com/2nwfwttp
  29. Ye L, Mou Y, Wang J, Jin ML. Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma. Oncotarget. 2017 Jul 18;8(29):47533-47546. doi: 10.18632/oncotarget.17258. PMID: 28472780; PMCID: PMC5564584.
  30. Maestre-Batlle D, Huff RD, Schwartz C, Alexis NE, Tebbutt SJ, Turvey S, Bølling AK, Carlsten C. Dibutyl Phthalate Augments Allergen-induced Lung Function Decline and Alters Human Airway Immunology. A Randomized Crossover Study. Am J Respir Crit Care Med. 2020 Sep 1;202(5):672-680. doi: 10.1164/rccm.201911-2153OC. PMID: 32320637.
  31. Babu SK, Puddicombe SM, Arshad HH, Wilson SJ, Ward J, Gozzard N, Higgs G, Holgate ST, Davies DE. Tumor necrosis factor alpha (TNF-α) autoregulates its expression and induces adhesion molecule expression in asthma. Clin Immunol. 2011 Jul;140(1):18-25. doi: 10.1016/j.clim.2011.03.005. Epub 2011 Mar 13. PMID: 21459047.
  32. Kang SW, Kim SK, Han YR, Hong D, Chon J, Chung JH, Hong SJ, Park MS, Ban JY. Promoter Polymorphism (-308G/A) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Asthma Risk: An Updated Meta-Analysis. Genet Test Mol Biomarkers. 2019 Jun;23(6):363-372. doi: 10.1089/gtmb.2018.0238. PMID: 31161819.
  33. Li M, Han T, Zhang W, Li W, Hu Y, Lee SK. Simulated altitude exercise training damages small intestinal mucosa barrier in the rats. J Exerc Rehabil. 2018 Jun 30;14(3):341-348. doi: 10.12965/jer.1835128.064. PMID: 30018916; PMCID: PMC6028221.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search