Covid-19 Research

Research Article

OCLC Number/Unique Identifier: 9060777642

Biotechnology of Nanostructures Micronutrients Vitamins for Human Health

General Science    Start Submission

Loutfy H Madkour*

Volume2-Issue5
Dates: Received: 2021-05-10 | Accepted: 2021-05-17 | Published: 2021-05-22
Pages: 358-371

Abstract

Nowadays, nanotechnology is used as a way to increase bioavailability and decrease the side effects of drugs and nutrients. Micronutrients and nutraceuticals such as vitamins, carotenoids, polyunsaturated fatty acids and polyphenols are classes of food ingredients that are essential for human health and well-being. These compounds are rarely added purely to the targeted food application but rather in encapsulated, solid, dry product forms with added functionalities such as improved stability, bioavailability or handling. Development of new strategies, like nanocarriers, that help to promote the access of neuroprotective molecules to the brain, is needed for providing more effective therapies for the disorders of the Central Nervous System (CNS). Polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. Active targeting of nanoparticles loaded with vitamin D to cancer cells.

FullText HTML FullText PDF DOI: 10.37871/jbres1243


Certificate of Publication




Copyright

© 2021 Madkour LH. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Madkour LH. Biotechnology of Nanostructures Micronutrients Vitamins for Human Health. J Biomed Res Environ Sci. 2021 May 22; 2(5): 358-371. doi: 10.37871/jbres1243, Article ID: jbres1243


Subject area(s)

References


  1. Casmir. The journal of State Medicine. Volume XX: 341-368, 1912. The etiology of the deficiency diseases, Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. Nutr Rev. 1975 Jun;33(6):176-177. doi: 10.1111/j.1753-4887.1975.tb05095.x. PMID: 1095967.
  2. Gonnet M, Thuaut, Boury F. New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release,. 2010;146:276-290.
  3. Fang Z, Bhandari B. Encapsulation of polyphenols - A review. Trends in Food Science and Technology. 2010;21:510-523. https://tinyurl.com/nvtp25yz
  4. Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds: A review. Pharmaceutics. 2011 Nov 4;3(4):793-829. doi: 10.3390/pharmaceutics3040793. PMID: 24309309; PMCID: PMC3857059.
  5. Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR. Marine natural products: A source of novel anticancer drugs. Mar Drugs. 2019 Aug 23;17(9):491. doi: 10.3390/md17090491. PMID: 31443597; PMCID: PMC6780632.
  6. Pandey N, Meena RP, Rai SK, Pandey S. Medicinal Plants Derived Nutraceuticals: A ReEmerging Health Aid. International Journal of Pharma and Bio Sciences. 2011;2:.419-441.
  7. Zhang Y, Zhou WE, Yan JQ, Liu M, Zhou Y, Shen X, Ma YL, Feng XS, Yang J, Li GH. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules. 2018 Jun 19;23(6):1484. doi: 10.3390/molecules23061484. PMID: 29921801; PMCID: PMC6099991.
  8. Eggersdorfer M, Laudert D, Létinois U, McClymont T, Medlock J, Netscher T, Bonrath W. One hundred years of vitamins-a success story of the natural sciences. Angew Chem Int Ed Engl. 2012 Dec 21;51(52):12960-12990. doi: 10.1002/anie.201205886. Epub 2012 Dec 3. PMID: 23208776.
  9. Karaźniewicz-Łada M, Główka A. A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids. J Sep Sci. 2016 Jan;39(1):132-148. doi: 10.1002/jssc.201501038. Epub 2015 Nov 25. PMID: 26503668.
  10. Weber D, Grune T. The contribution of β-carotene to vitamin A supply of humans. Mol Nutr Food Res. 2012 Feb;56(2):251-258. doi: 10.1002/mnfr.201100230. Epub 2011 Sep 29. PMID: 21957049.
  11. Jacob RA, Sotoudeh G. Vitamin C function and status in chronic disease. Nutr Clin Care. 2002 Mar-Apr;5(2):66-74. doi: 10.1046/j.1523-5408.2002.00005.x. PMID: 12134712.
  12. Wimalawansa SJ. Vitamin D in the new millennium. Curr Osteoporos Rep. 2012 Mar;10(1):4-15. doi: 10.1007/s11914-011-0094-8. PMID: 22249582.
  13. Bouillon R, Suda T. Vitamin D: Calcium and bone homeostasis during evolution. Bonekey Rep. 2014 Jan 8;3:480. doi: 10.1038/bonekey.2013.214. PMID: 24466411; PMCID: PMC3899559.
  14. Sen CK, Khanna S, Roy S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci. 2006 Mar 27;78(18):2088-2098. doi: 10.1016/j.lfs.2005.12.001. Epub 2006 Feb 3. PMID: 16458936; PMCID: PMC1790869.
  15. Shearer MJ, Okano T. Key pathways and regulators of vitamin k function and intermediary metabolism. Annu Rev Nutr. 2018 Aug 21;38:127-151. doi: 10.1146/annurev-nutr-082117-051741. Epub 2018 Jun 1. PMID: 29856932.
  16. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017 Jun;18(2):153-165. doi: 10.1007/s11154-017-9424-1. PMID: 28516265.
  17. Dobnig H. A review of the health consequences of the vitamin D deficiency pandemic. J Neurol Sci. 2011 Dec 15;311(1-2):15-8. doi: 10.1016/j.jns.2011.08.046. Epub 2011 Sep 22. PMID: 21939984.
  18. Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000 May;23(5):209-16. doi: 10.1016/s0166-2236(99)01543-x. PMID: 10782126.
  19. Harrison FE, Bowman GL, Polidori MC. Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients. 2014 Apr 24;6(4):1752-81. doi: 10.3390/nu6041752. PMID: 24763117; PMCID: PMC4011065.
  20. Rebec GV, Pierce RC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol. 1994 Aug;43(6):537-65. doi: 10.1016/0301-0082(94)90052-3. PMID: 7816935.
  21. Rebec G.V, Barton SJ, Marseilles AM, Collins K. Ascorbate treatment attenuates the huntington behavioral phenotype in mice. Neuroreport. 2003;14:1263–1265. doi: 10.1097/01.wnr.0000081868.45938.12
  22. Qiu S, Li L, Weeber EJ, May JM. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res. 2007 Apr;85(5):1046-1056. doi: 10.1002/jnr.21204. PMID: 17304569.
  23. Ballaz S, Morales I, Rodríguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res. 2013 Dec;91(12):1609-1617. doi: 10.1002/jnr.23276. Epub 2013 Aug 30. PMID: 23996657.
  24. Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Franceschi C, Monti D. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev. 2014 Mar;14:81-101. doi: 10.1016/j.arr.2014.01.001. Epub 2014 Jan 11. PMID: 24418256.
  25. Crouzin N, Ferreira MC, Cohen-Solal C, Barbanel G, Guiramand J, Vignes M. Neuroprotection induced by vitamin E against oxidative stress in hippocampal neurons: involvement of TRPV1 channels. Mol Nutr Food Res. 2010 Apr;54(4):496-505. doi: 10.1002/mnfr.200900188. PMID: 20087852.
  26. Dolu N, Khan A, Dokutan Ş. Effect of Vitamin E Administration on Learning of the Young Male Rats. J Exp Neurosci. 2015 Sep 2;9:81-85. doi: 10.4137/JEN.S29843. PMID: 26380558; PMCID: PMC4559183.
  27. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009 Mar 15;46(6):719-730. doi: 10.1016/j.freeradbiomed.2008.12.018. Epub 2009 Jan 6. PMID: 19162177; PMCID: PMC2649700.
  28. Kontush A, Mann U, Arlt S, Ujeyl A, Lührs C, Müller-Thomsen T, Beisiegel U. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med. 2001 Aug 1;31(3):345-354. doi: 10.1016/s0891-5849(01)00595-0. PMID: 11461772.
  29. Manor D, Morley S. The alpha-tocopherol transfer protein. Vitam Horm. 2007;76:45-65. doi: 10.1016/S0083-6729(07)76003-X. PMID: 17628171.
  30. Spector R, Johanson CE. Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B. E J Neurochem. 2016;103:425-438. doi: 10.1111/j.1471-4159.2007.04773.x
  31. Fuentes J, Selva J, Moya C, Vázquez L, Lozano MV, Marcos P, Oliver M, Robledo V, Ortega MJ, González N, Jimenez MM. Neuroprotective Natural Molecules, From Food to Brain. Front Neurosci. 2018 Oct 23;12:721. doi: 10.3389/fnins.2018.00721. PMID: 30405328; PMCID: PMC6206709.
  32. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010 Mar 30;2:12. doi: 10.3389/fnagi.2010.00012. PMID: 20552050; PMCID: PMC2874397.
  33. Santos LF, Freitas RL, Xavier SM, Saldanha GB, Freitas RM. Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures. Pharmacol Biochem Behav. 2008 Mar;89(1):1-5. doi: 10.1016/j.pbb.2007.10.007. Epub 2007 Oct 23. PMID: 18096215.
  34. Aumailley L, Warren A, Garand C, Dubois MJ, Paquet ER, Le Couteur DG, et al. Vitamin C modulates the metabolic and cytokine profiles, alleviates hepatic endoplasmic reticulum stress, and increases the life span of Gulo-/- mice. Aging 8. 2016;458-483. doi: 10.18632/aging.10 0902
  35. Ramis MR, Sarubbo F, Terrasa JL, Moranta D, Aparicio S, Miralles A, et al. Chronic alpha-tocopherol increases central monoamines synthesis and improves cognitive and motor abilities in old rats. Rejuvenation Res. 2016;19:159-171. doi: 10.1089/rej.2015.1685
  36. Sun Y, Pham AN, Waite TD. The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinson’s disease. Dalton Trans. 2018 Mar 28;47(12):4059-4069. doi: 10.1039/c7dt04373b. Epub 2018 Feb 6. PMID: 29406547.
  37. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U, Mecocci P. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging. 2003 Nov;24(7):915-919. doi: 10.1016/s0197-4580(03)00031-9. PMID: 12928050.
  38. Mangialasche F, Xu W, Kivipelto M, Costanzi E, Ercolani S, Pigliautile M, Cecchetti R, Baglioni M, Simmons A, Soininen H, Tsolaki M, Kloszewska I, Vellas B, Lovestone S, Mecocci P; AddNeuroMed Consortium. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging. 2012 Oct;33(10):2282-2290. doi: 10.1016/j.neurobiolaging.2011.11.019. Epub 2011 Dec 20. PMID: 22192241.
  39. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, Thal LJ; Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005 Jun 9;352(23):2379-88. doi: 10.1056/NEJMoa050151. Epub 2005 Apr 13. PMID: 15829527.
  40. Goodman M, Bostick RM, Kucuk O, Jones DP. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med. 2011 Sep 1;51(5):1068-1084. doi: 10.1016/j.freeradbiomed.2011.05.018. Epub 2011 May 24. PMID: 21683786.
  41. Santilli F, D’Ardes D, Davi, G. Oxidative stress in chronic vascular disease: from prediction to prevention. Vascul Pharmacol. 2015;74:23–37. doi: 10. 1016/j.vph.2015.09.003
  42. Basambombo LL, Carmichael PH, Côté S, Laurin D. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother. 2017 Feb;51(2):118-124. doi: 10.1177/1060028016673072. Epub 2016 Oct 5. PMID: 27708183.
  43. Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, aging and alzheimer’s disease. Nutrients. 2017 Jun 27;9(7):670. doi: 10.3390/nu9070670. PMID: 28654021; PMCID: PMC5537785.
  44. Ohlow MJ, Sohre S, Granold M, Schreckenberger M, Moosmann B. Why have clinical trials of antioxidants to prevent neurodegeneration failed? - A cellular investigation of novel phenothiazine-type antioxidants reveals competing objectives for pharmaceutical neuroprotection. Pharm Res. 2017 Feb;34(2):378-393. doi: 10.1007/s11095-016-2068-0. Epub 2016 Nov 28. PMID: 27896592.
  45. Gueli N, Verrusio W, Linguanti A, Di Maio F, Martinez A, Marigliano B, et al. Vitamin D: drug of the future. A new therapeutic approach. Arch Gerontol Geriatr. 2012;54(1):222-227. https://tinyurl.com/298dfb77
  46. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol. 2016;53:34-48.
  47. Bochicchio S, Barba AA, Grassi G, Lamberti G. Vitamin delivery: carriers based on nanoliposomes produced via ultrasonic irradiation, LWT. Food Sci Technol. 2016;69:9-16.
  48. Braithwaite MC, Kumar P, Choonara YE, du Toit LC, Tomar LK, Tyagi C. A novel multi-tiered experimental approach unfolding the mechanisms behind cyclodextrin-vitamin inclusion complexes for enhanced vitamin solubility and stability. Int J Pharm. 2017;532(1):90–104.
  49. Chaparro CM, Dewey KG. Use of lipid-based nutrient supplements (LNS) to improve the nutrient adequacy of general food distribution rations for vulnerable sub-groups in emergency settings. Matern Child Nutr. 2010 Jan;6 Suppl 1(Suppl 1):1-69. doi: 10.1111/j.1740-8709.2009.00224.x. PMID: 20055936; PMCID: PMC6860843.
  50. Nutri-Facts: Understanding Vitamins & More. 2012. https://tinyurl.com/68yhwb9j
  51. Velikov KP, Pelan E. Colloidal Delivery Systems for Micronutrients and Nutraceuticals. Soft Matter. 2008;4:1964-1980.
  52. Gharsallaoui A, Roudaut G, Chambin O, Voilley, Saurel R. Applications of Spray-Dr ying in Microencapsulation of Food Ingredients: An Overview, Food Research International. 2007;40:1107-1121.
  53. Shahidi F, Han XQ. Encapsulation of food ingredients. Crit Rev Food Sci Nutr. 1993;33(6):501-547. doi: 10.1080/10408399309527645. PMID: 8216812.
  54. Gouin S. Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends in Food Science & Technology. 2004;15:330-347.
  55. Kuang SS, Oliveira JC, Crean AM. Microencapsulation as a tool for incorporating bioactive ingredients into food. Crit Rev Food Sci Nutr. 2010 Nov;50(10):951-68. doi: 10.1080/10408390903044222. PMID: 21108075.
  56. Madene A, Jacquot M, Joël S, Desobry S. Flavour Encapsulation and Controlled Release- a Review. International Journal of Food Science and Technology. 2006;41:1-21.
  57. Augustin MA, Hemar Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev. 2009 Apr;38(4):902-912. doi: 10.1039/b801739p. Epub 2008 Dec 4. PMID: 19421570.
  58. Desai KGH, Park HJ. Recent Developments in Microencapsulation of Food Ingredients. Drying Technology. 2005;23:1361-1394.
  59. Annalisa D, Sabrina B, Gaetano L, Paolo B, Barbara J, Anna AB. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv. 2019;9:19800-19812. doi: 10.1039/c9ra03022k.
  60. Sreeraj G, Augustine A, Józef TH, Sabu T. Introduction of Nanotechnology in Herbal Drugs and Nutraceutical. A Review. J Nanomedine Biotherapeutic Discov. 2016 ;6:2 doi: 10.4172/2155-983X.1000143.
  61. Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2011 Mar 25;74(3):496-511. doi: 10.1021/np100550t. Epub 2010 Dec 7. PMID: 21138324; PMCID: PMC3061248.
  62. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012 Mar 23;75(3):311-35. doi: 10.1021/np200906s. Epub 2012 Feb 8. PMID: 22316239; PMCID: PMC3721181.
  63. Bilia AR, Bergonzi MC, Guccione C, Manconi M, Fadda AM, et al. Sinico C: Vesicles and micelles. Two versatile vectors for the delivery of natural products. J Drug Deliv Sci Tec.
  64. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010 Oct;81(7):680-689. doi: 10.1016/j.fitote.2010.05.001. Epub 2010 May 12. PMID: 20471457.
  65. Shi F, Zhang Y, Yang G, Guo T, Feng N. Preparation of a micro/nanotechnology based multi-unit drug delivery system for a Chinese medicine Niuhuang Xingxiao Wan and assessment of its antitumor efficacy. Int J Pharm. 2015 Aug 15;492(1-2):244-247. doi: 10.1016/j.ijpharm.2015.07.023. Epub 2015 Jul 15. PMID: 26188318.
  66. Israeli-Lev G, Livney YD Self-assembly of hydrophobin and its coassembly with hydrophobic nutraceuticals in aqueous solutions. Towards application as delivery systems. Food Hydrocoll. 2014;35:28-35.
  67. Masiá R, Nicolás R, Periago MJ, Ros G, Lagaron JM, Rubio A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem. 2015 Feb 1;168:124-133. doi: 10.1016/j.foodchem.2014.07.051. Epub 2014 Jul 14. PMID: 25172691.
  68. Zaragoza ML, Silva E, Cortez E, Tostado E, Guerrero D. Optimization of nanocapsules preparation by the emulsion-diffusion method for food applications. LWT - Food Sci Technol. 2011;44:1362-1368. doi:10.1016/j.lwt.2010.10.004
  69. Abbasi A, Emam-Djomeh Z, Mousavi MA, Davoodi D. Stability of vitamin D(3) encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014 Jan 15;143:379-383. doi: 10.1016/j.foodchem.2013.08.018. Epub 2013 Aug 12. PMID: 24054255.
  70. Kim T, Oh J. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides. J Solid State Chem. 2016;233:125-132. doi:10.1016/j.jssc.2015.10.019
  71. Hosseini SMH, Djomeh Z, Sabatino P, Meeren P. Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds. Food Hydrocoll. 2015;50:16-26.
  72. Lacatusu I, Badea N, Niculae G, Bordei N, Stan R. Lipid nanocarriers based on natural compounds: An evolving role in plant extract delivery. Eur J Lipid Sci Technol. 2014;116:1708-1717.
  73. Zhou H, Liu G, Zhang J, Sun N, Duan M, Yan Z, Xia Q. Novel lipid-free nanoformulation for improving oral bioavailability of coenzyme Q10. Biomed Res Int. 2014;2014:793879. doi: 10.1155/2014/793879. Epub 2014 Jun 5. PMID: 24995328; PMCID: PMC4068099.
  74. Cho HT, Trujillo L, Kim J, Park Y, Xiao H, McClements DJ. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chem. 2014 Aug 1;156:117-122. doi: 10.1016/j.foodchem.2014.01.084. Epub 2014 Feb 6. PMID: 24629946.
  75. Matalanis A, Jones OG, McClements DJ. Structured biopolymerbased delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 2011;25:1865-1880.
  76. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012 May 30;60(21):5373-9. doi: 10.1021/jf300609p. Epub 2012 May 16. PMID: 22506728.
  77. Campardelli R, Reverchon E. α-Tocopherol nanosuspensions produced using a supercritical assisted process. J Food Eng. 2015;149:131-136.
  78. Yang W, Xu C, Liu F, Yuan F, Gao Y. Native and thermally modified protein-polyphenol coassemblies: lactoferrin-based nanoparticles and submicrometer particles as protective vehicles for (-)-epigallocatechin-3-gallate. J Agric Food Chem. 2014 Nov 5;62(44):10816-27. doi: 10.1021/jf5038147. Epub 2014 Oct 21. PMID: 25310084.
  79. Al-Okbi SY, Mohamed DA, Hamed TE, Edris AE. Protective effect of clove oil and eugenol microemulsions on fatty liver and dyslipidemia as components of metabolic syndrome. J Med Food. 2014 Jul;17(7):764-771. doi: 10.1089/jmf.2013.0033. Epub 2014 Mar 10. PMID: 24611461.
  80. Semyonov D, Ramon O, Shoham Y, Shimoni E. Enzymatically synthesized dextran nanoparticles and their use as carriers for nutraceuticals. Food Funct. 2014 Oct;5(10):2463-2474. doi: 10.1039/c4fo00103f. Epub 2014 Aug 11. PMID: 25110170.
  81. Hsu CY, Wang PW, Alalaiwe A, Lin ZC, Fang JY. Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients. 2019 Jan 1;11(1):68. doi: 10.3390/nu11010068. PMID: 30609658; PMCID: PMC6357185.
  82. Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P T. 2017 Dec;42(12):742-755. PMID: 29234213; PMCID: PMC5720487.
  83. Patra JK, Das G, Fraceto LF, Campos, Torres, Torres LS, Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19;16(1):71. doi: 10.1186/s12951-018-0392-8. PMID: 30231877; PMCID: PMC6145203.
  84. Maniam G, Mai CW, Zulkefeli M, Dufès C, Tan DMY, Fu JY. Challenges and opportunities of nanotechnology as delivery platform for tocotrienols in cancer therapy. Front Pharmacol. 2018;9:1358. doi:10.3389/fphar.2018.01358.
  85. Mario Pagliaro. Italy’s nutraceutical industry: A process and bioeconomy perspective into a key area of the global economy. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 2020;14:180-186. doi: 10.1002/bbb.2059.
  86. Santini A, Novellino E. Nutraceuticals - shedding light on the grey area between pharmaceuticals and food. Expert Rev Clin Pharmacol. 2018 Jun;11(6):545-547. doi: 10.1080/17512433.2018.1464911. Epub 2018 Apr 23. PMID: 29667442.
  87. FDA Guidance for industry: assessing the effects of significant manufacturing process changes, including emerging technologies, on the safety and regulatory status of food ingredients and food contact substances, including food ingredients that are color additives. U.S. Department of Health and Human Services Food and Drug Administration, Center for Food Safety and Applied Nutrition. 2014. https://tinyurl.com/v9fmv77h
  88. Pagliaro M, Chemistry education fostering creativity in the digital era. Isr J Chem. 2019;59:565-571.
  89. Resende D, Lima SA, Reis S. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf B Biointerfaces. 2020 Sep;193:111121. doi: 10.1016/j.colsurfb.2020.111121. Epub 2020 May 15. PMID: 32464354.
  90. Chaudhry Q, Castle L. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci Technol. 2011;22:595-603.
  91. Bucheli T Agricultural applications of nanotechnology. In: Parisi C, Vigani M, Cerezo E (eds) Proceedings of a workshop on Nanotechnology for the agricultural sector: from research to the field, Seville, November 2013. European Commission, Joint Research Centre, Institute for Prospective Technological Studies, Luxembourg. 214.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search