Covid-19 Research

Review Article

OCLC Number/Unique Identifier:

The Beneficial Role of Exercise and Whole-Food Plant-Based Diet in Coronary Artery Disease Prevention and Management

Medicine Group    Start Submission

Dasaad Mulijono*

Volume6-Issue10
Dates: Received: 2025-08-29 | Accepted: 2025-10-04 | Published: 2025-10-08
Pages: 1408-1414

Abstract

Coronary Artery Disease (CAD) remains a critical global health issue, substantially contributing to morbidity and mortality worldwide. The strategic combination of Regular Physical Exercise (RPE) and a Whole-Food Plant-Based Diet (WFPBD) offers an innovative and powerful solution to mitigate cardiovascular disease risk. Under the visionary leadership of Prof. Dasaad Mulijono, Bethsaida Hospital in Tangerang has successfully pioneered this integrative approach, achieving exceptional clinical results. This comprehensive review examines the multifaceted cardiovascular benefits of RPE and plant-based nutritional therapy, highlighting improvements in lipid profiles, insulin sensitivity, blood pressure regulation, cardiac and vascular remodelling, sleep quality, mitochondrial function, and cellular longevity. Highlighting the ground-breaking clinical outcomes at Bethsaida Cardiac Centre, this integrative model addresses traditional cardiovascular risk factors, enhances overall vitality, and promotes longevity, representing a transformative framework for modern cardiovascular healthcare.

FullText HTML FullText PDF DOI: 10.37871/jbres2196


Certificate of Publication




Copyright

© 2025 Mulijono D. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Mulijono D. The Benefi cial Role of Exercise and Whole-Food Plant-Based Diet in Coronary Artery Disease Prevention and Management. J Biomed Res Environ Sci. 2025 Oct 08; 6(10): 1408-1414. doi: 10.37871/jbres2196, Article ID: JBRES2196, Available at: https://www.jelsciences.com/articles/jbres2196.pdf


Subject area(s)

References


  1. Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, McGhie DV, Mwangi J, Pervan B, Narula J, Pineiro D, Pinto FJ. The Heart of the World. Glob Heart. 2024 Jan 25;19(1):11. doi: 10.5334/gh.1288. PMID: 38273998; PMCID: PMC10809869.
  2. Shahjehan RD, Sharma S, Bhutta BS. Coronary artery disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025.
  3. Brown JC, Gerhardt TE, Kwon E. Risk Factors for Coronary Artery Disease. 2023 Jan 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32119297.
  4. Hu FB. Diet and lifestyle influences on risk of coronary heart disease. Curr Atheroscler Rep. 2009 Jul;11(4):257-63. doi: 10.1007/s11883-009-0040-8. PMID: 19500488.
  5. Gaudel P, Kaunonen M, Neupane S, Joronen K, Koivisto AM, Rantanen A. Lifestyle-related risk factors among patients with coronary artery disease in Nepal. Scand J Caring Sci. 2020 Sep;34(3):782-791. doi: 10.1111/scs.12784. Epub 2019 Oct 30. PMID: 31667878.
  6. Chiuve SE, McCullough ML, Sacks FM, Rimm EB. Healthy lifestyle factors in the primary prevention of coronary heart disease among men: benefits among users and nonusers of lipid-lowering and antihypertensive medications. Circulation. 2006 Jul 11;114(2):160-7. doi: 10.1161/CIRCULATIONAHA.106.621417. Epub 2006 Jul 3. PMID: 16818808.
  7. Rippe JM. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. Am J Lifestyle Med. 2018 Dec 2;13(2):204-212. doi: 10.1177/1559827618812395. PMID: 30800027; PMCID: PMC6378495.
  8. Hajar R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart Views. 2017 Jul-Sep;18(3):109-114. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17. PMID: 29184622; PMCID: PMC5686931.
  9. Tuso P, Stoll SR, Li WW. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm J. 2015 Winter;19(1):62-7. doi: 10.7812/TPP/14-036. Epub 2014 Nov 24. PMID: 25431999; PMCID: PMC4315380.
  10. Mehta P, Tawfeeq S, Padte S, Sunasra R, Desai H, Surani S, Kashyap R. Plant-based diet and its effect on coronary artery disease: A narrative review. World J Clin Cases. 2023 Jul 16;11(20):4752-4762. doi: 10.12998/wjcc.v11.i20.4752. PMID: 37583985; PMCID: PMC10424050.
  11. Salehin S, Rasmussen P, Mai S, Mushtaq M, Agarwal M, Hasan SM, Salehin S, Raja M, Gilani S, Khalife WI. Plant Based Diet and Its Effect on Cardiovascular Disease. Int J Environ Res Public Health. 2023 Feb 14;20(4):3337. doi: 10.3390/ijerph20043337. PMID: 36834032; PMCID: PMC9963093.
  12. Diab A, Dastmalchi LN, Gulati M, Michos ED. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc Health Risk Manag. 2023 Apr 21;19:237-253. doi: 10.2147/VHRM.S379874. PMID: 37113563; PMCID: PMC10128075.
  13. Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients. 2023 Jul 21;15(14):3244. doi: 10.3390/nu15143244. PMID: 37513660; PMCID: PMC10386413.
  14. Elliott PS, Kharaty SS, Phillips CM. Plant-Based Diets and Lipid, Lipoprotein, and Inflammatory Biomarkers of Cardiovascular Disease: A Review of Observational and Interventional Studies. Nutrients. 2022 Dec 17;14(24):5371. doi: 10.3390/nu14245371. PMID: 36558530; PMCID: PMC9787709.
  15. Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018 Aug;41(8):1062-1068. doi: 10.1002/clc.23027. Epub 2018 Aug 17. PMID: 30014498; PMCID: PMC6489854.
  16. Al-Mamari A. Atherosclerosis and physical activity. Oman Med J. 2009 Jul;24(3):173-8. doi: 10.5001/omj.2009.34. PMID: 22224180; PMCID: PMC3251175.
  17. Bowles DK, Laughlin MH. Mechanism of beneficial effects of physical activity on atherosclerosis and coronary heart disease. J Appl Physiol (1985). 2011 Jul;111(1):308-10. doi: 10.1152/japplphysiol.00634.2011. Epub 2011 May 26. PMID: 21617083; PMCID: PMC3137539.
  18. Mehanna E, Hamik A, Josephson RA. Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions. Curr Atheroscler Rep. 2016 May;18(5):26. doi: 10.1007/s11883-016-0580-7. PMID: 27005804; PMCID: PMC5593139.
  19. Chacon D, Fiani B. A Review of Mechanisms on the Beneficial Effect of Exercise on Atherosclerosis. Cureus. 2020 Nov 23;12(11):e11641. doi: 10.7759/cureus.11641. PMID: 33376653; PMCID: PMC7755721.
  20. Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med. 2018 Sep 28;5:135. doi: 10.3389/fcvm.2018.00135. PMID: 30324108; PMCID: PMC6172294.
  21. Aengevaeren VL, Mosterd A, Sharma S, Prakken NHJ, Möhlenkamp S, Thompson PD, Velthuis BK, Eijsvogels TMH. Exercise and Coronary Atherosclerosis: Observations, Explanations, Relevance, and Clinical Management. Circulation. 2020 Apr 21;141(16):1338-1350. doi: 10.1161/CIRCULATIONAHA.119.044467. Epub 2020 Apr 20. PMID: 32310695; PMCID: PMC7176353.
  22. Ruderman NB, Schneider SH. Diabetes, exercise, and atherosclerosis. Diabetes Care. 1992 Nov;15(11):1787-93. doi: 10.2337/diacare.15.11.1787. PMID: 1468316.
  23. Escalante Y, Saavedra JM, García-Hermoso A, Domínguez AM. Improvement of the lipid profile with exercise in obese children: a systematic review. Prev Med. 2012 May;54(5):293-301. doi: 10.1016/j.ypmed.2012.02.006. Epub 2012 Feb 23. PMID: 22387009.
  24. Muscella A, Stefàno E, Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease. Am J Physiol Heart Circ Physiol. 2020 Jul 1;319(1):H76-H88. doi: 10.1152/ajpheart.00708.2019. Epub 2020 May 22. PMID: 32442027.
  25. Yun H, Su W, Zhao H, Li H, Wang Z, Cui X, Xi C, Gao R, Sun Y, Liu C. Effects of different exercise modalities on lipid profile in the elderly population: A meta-analysis. Medicine (Baltimore). 2023 Jul 21;102(29):e33854. doi: 10.1097/MD.0000000000033854. PMID: 37478257; PMCID: PMC10662825.
  26. Heath GW, Ehsani AA, Hagberg JM, Hinderliter JM, Goldberg AP. Exercise training improves lipoprotein lipid profiles in patients with coronary artery disease. Am Heart J. 1983 Jun;105(6):889-95. doi: 10.1016/0002-8703(83)90385-x. PMID: 6858834.
  27. Stanton KM, Kienzle V, Dinnes DLM, Kotchetkov I, Jessup W, Kritharides L, Celermajer DS, Rye KA. Moderate- and High-Intensity Exercise Improves Lipoprotein Profile and Cholesterol Efflux Capacity in Healthy Young Men. J Am Heart Assoc. 2022 Jun 21;11(12):e023386. doi: 10.1161/JAHA.121.023386. Epub 2022 Jun 14. PMID: 35699182; PMCID: PMC9238648.
  28. Arefirad T, Seif E, Sepidarkish M, Mohammadian Khonsari N, Mousavifar SA, Yazdani S, Rahimi F, Einollahi F, Heshmati J, Qorbani M. Effect of exercise training on nitric oxide and nitrate/nitrite (NOx) production: A systematic review and meta-analysis. Front Physiol. 2022 Oct 4;13:953912. doi: 10.3389/fphys.2022.953912. PMID: 36267589; PMCID: PMC9576949.
  29. Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogino K. Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr. 2017 May;60(3):180-186. doi: 10.3164/jcbn.16-108. Epub 2017 Apr 7. PMID: 28603344; PMCID: PMC5463976.
  30. Oral O. Nitric oxide and its role in exercise physiology. J Sports Med Phys Fitness. 2021 Sep;61(9):1208-1211. doi: 10.23736/S0022-4707.21.11640-8. Epub 2021 Jan 20. PMID: 33472351.
  31. Maeda S, Tanabe T, Otsuki T, Sugawara J, Iemitsu M, Miyauchi T, Kuno S, Ajisaka R, Matsuda M. Moderate regular exercise increases basal production of nitric oxide in elderly women. Hypertens Res. 2004 Dec;27(12):947-53. doi: 10.1291/hypres.27.947. PMID: 15894835.
  32. Lewis TV, Dart AM, Chin-Dusting JP, Kingwell BA. Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 1999 Nov;19(11):2782-7. doi: 10.1161/01.atv.19.11.2782. PMID: 10559026.
  33. Goto C, Nishioka K, Umemura T, Jitsuiki D, Sakagutchi A, Kawamura M, Chayama K, Yoshizumi M, Higashi Y. Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens. 2007 Aug;20(8):825-30. doi: 10.1016/j.amjhyper.2007.02.014. PMID: 17679027.
  34. Borghouts LB, Keizer HA. Exercise and insulin sensitivity: a review. Int J Sports Med. 2000 Jan;21(1):1-12. doi: 10.1055/s-2000-8847. PMID: 10683091.
  35. Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol (1985). 2005 Jul;99(1):338-43. doi: 10.1152/japplphysiol.00123.2005. PMID: 16036907.36.
  36. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017 Mar 1;2(1):e000143.doi: 10.1136/bmjsem-2016-000143. PMID: 28879026; PMCID: PMC5569266.
  37. Alpsoy Ş. Exercise and Hypertension. Adv Exp Med Biol. 2020;1228:153-167. doi: 10.1007/978-981-15-1792-1_10.PMID:32342456.
  38. Lopes S, Mesquita-Bastos J, Alves AJ, Ribeiro F. Exercise as a tool for hypertension and resistant hypertension management: current insights. Integr Blood Press Control. 2018 Sep 20;11:65-71. doi: 10.2147/IBPC.S136028. PMID: 30288097; PMCID: PMC6159802.
  39. Halbert JA, Silagy CA, Finucane P, Withers RT, Hamdorf PA, Andrews GR. The effectiveness of exercise training in lowering blood pressure: a meta-analysis of randomised controlled trials of 4 weeks or longer. J Hum Hypertens. 1997 Oct;11(10):641-9. doi: 10.1038/sj.jhh.1000509. PMID: 9400906.
  40. Saco-Ledo G, Valenzuela PL, Ruiz-Hurtado G, Ruilope LM, Lucia A. Exercise Reduces Ambulatory Blood Pressure in Patients With Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2020 Dec 15;9(24):e018487. doi: 10.1161/JAHA.120.018487. Epub 2020 Dec 5. PMID: 33280503; PMCID: PMC7955398.
  41. Ishikawa-Takata K, Ohta T, Tanaka H. How much exercise is required to reduce blood pressure in essential hypertensives: a dose-response study. Am J Hypertens. 2003 Aug;16(8):629-33.doi:10.1016/s0895-7061(03)00895-1.PMID:12878367.
  42. Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. Prog Cardiovasc Dis. 2012 Mar-Apr;54(5):380-6. doi: 10.1016/j.pcad.2012.01.006. PMID: 22386288.
  43. Duncker DJ, van Deel ED, de Waard MC, de Boer M, Merkus D, van der Velden J. Exercise training in adverse cardiac remodeling. Pflugers Arch. 2014 Jun;466(6):1079-91. doi: 10.1007/s00424-014-1464-8. Epub 2014 Feb 27. Erratum in: Pflugers Arch. 2016 Feb;468(2):367.doi:10.1007/s00424-015-1761-x.PMID:24573174.
  44. Weiner RB, DeLuca JR, Wang F, Lin J, Wasfy MM, Berkstresser B, Stöhr E, Shave R, Lewis GD, Hutter AM Jr, Picard MH, Baggish AL. Exercise-Induced Left Ventricular Remodeling Among Competitive Athletes: A Phasic Phenomenon. Circ Cardiovasc Imaging. 2015Dec;8(12):e003651.doi:10.1161/CIRCIMAGING.115.003651.PMID:26666381.
  45. Bernardo BC, McMullen JR. Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiol Clin. 2016 Nov;34(4):515-530. doi: 10.1016/j.ccl.2016.06.002. Epub 2016 Aug 25. PMID: 27692221.
  46. Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med. 2018 Sep 11;5:127. doi: 10.3389/fcvm.2018.00127. PMID: 30255026; PMCID: PMC6141631.
  47. Thompson SL, Brade CJ, Henley-Martin SR, Naylor LH, Spence AL. Vascular adaptation to exercise: a systematic review and audit of female representation. Am J Physiol Heart Circ Physiol. 2024 Apr 1;326(4):H971-H985. doi: 10.1152/ajpheart.00788.2023. Epub 2024 Feb 23. PMID: 38391316.
  48. Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev. 2017 Apr;97(2):495-528. doi:10.1152/physrev.00014.2016.PMID:28151424;PMCID:PMC5539408.
  49. Sun H, Zhang Y, Shi L. Advances in exercise-induced vascular adaptation: mechanisms, models, and methods. Front Bioeng Biotechnol. 2024 Feb 22;12:1370234. doi: 10.3389/fbioe.2024.1370234. PMID: 38456010; PMCID: PMC10917942.
  50. Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol. 2021 Sep 26;13(9):399-415. doi: 10.4330/wjc.v13.i9.399.PMID:34621486;PMCID:PMC8462042.
  51. Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y, Kataoka Y, Noda A. Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ. 2018 Jul 11;6:e5172. doi: 10.7717/peerj.5172. PMID: 30018855; PMCID: PMC6045928.
  52. Alnawwar MA, Alraddadi MI, Algethmi RA, Salem GA, Salem MA, Alharbi AA. The Effect of Physical Activity on Sleep Quality and Sleep Disorder: A Systematic Review. Cureus. 2023Aug16;15(8):e43595.doi:10.7759/cureus.43595.PMID:37719583;PMCID:PMC1050395
  53. Jurado-Fasoli L, De-la-O A, Molina-Hidalgo C, Migueles JH, Castillo MJ, Amaro-Gahete FJ. Exercise training improves sleep quality: A randomized controlled trial. Eur J Clin Invest. 2020Mar;50(3):e13202.doi:10.1111/eci.13202.Epub2020Feb12.PMID:31989592.
  54. Xie Y, Liu S, Chen XJ, Yu HH, Yang Y, Wang W. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Psychiatry. 2021 Jun 7;12:664499. doi: 10.3389/fpsyt.2021.664499. PMID: 34163383; PMCID: PMC8215288.
  55. Xie W, Lu D, Liu S, Li J, Li R. The optimal exercise intervention for sleep quality in adults: A systematic review and network meta-analysis. Prev Med. 2024 Jun;183:107955. doi: 10.1016/j.ypmed.2024.107955. Epub 2024 Apr 18. PMID: 38641082.
  56. Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol. 2021 Feb;599(3):803-817. doi: 10.1113/JP278853. Epub 2019 Dec 9. PMID: 31674658.
  57. Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med Sci Sports Exerc. 2015 Sep;47(9):1922-31. doi: 10.1249/MSS.0000000000000605. PMID: 25539479; PMCID: PMC4478283.
  58. Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc. 2024 Oct;13(19):e036555. doi: 10.1161/JAHA.124.036555. Epub 2024 Sep 18. PMID: 39291488; PMCID: PMC11681480.
  59. Mølmen KS, Almquist NW, Skattebo Ø. Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Med. 2025 Jan;55(1):115-144. doi: 10.1007/s40279-024-02120-2. Epub 2024 Oct 10. PMID: 39390310; PMCID: PMC11787188.
  60. Song S, Lee E, Kim H. Does Exercise Affect Telomere Length? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina (Kaunas). 2022 Feb 5;58(2):242. doi: 10.3390/medicina58020242. PMID: 35208566; PMCID: PMC8879766.
  61. Sánchez-González JL, Sánchez-Rodríguez JL, Varela-Rodríguez S, González-Sarmiento R, Rivera-Picón C, Juárez-Vela R, Tejada-Garrido CI, Martín-Vallejo J, Navarro-López V. Effects of Physical Exercise on Telomere Length in Healthy Adults: Systematic Review, Meta-Analysis, and Meta-Regression. JMIR Public Health Surveill. 2024 Jan 9;10:e46019. doi: 10.2196/46019. PMID: 38194261; PMCID: PMC10806448.
  62. Puterman E, Weiss J, Lin J, Schilf S, Slusher AL, Johansen KL, Epel ES. Aerobic exercise lengthens telomeres and reduces stress in family caregivers: A randomized controlled trial - Curt Richter Award Paper 2018. Psychoneuroendocrinology. 2018 Dec;98:245-252. doi: 10.1016/j.psyneuen.2018.08.002. Epub 2018 Aug 2. PMID: 30266522.
  63. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017 Jul 4;8(27):45008-45019. doi: 10.18632/oncotarget.16726. PMID: 28410238; PMCID: PMC5546536.
  64. Oizumi R, Sugimoto Y, Aibara H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR Dermatol. 2024 Mar 14;7:e51962. doi: 10.2196/51962. PMID: 38483460; PMCID: PMC10979338.
  65. Alam M, Walter AJ, Geisler A, Roongpisuthipong W, Sikorski G, Tung R, Poon E. Association of Facial Exercise With the Appearance of Aging. JAMA Dermatol. 2018 Mar 1;154(3):365-367. doi: 10.1001/jamadermatol.2017.5142. PMID: 29299598; PMCID: PMC5885810.
  66. Nishikori S, Yasuda J, Murata K, Takegaki J, Harada Y, Shirai Y, Fujita S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci Rep. 2023 Jun 23;13(1):10214. doi: 10.1038/s41598-023-37207-9. PMID: 37353523; PMCID: PMC10290068.
  67. Castillo-Garzón MJ, Ruiz JR, Ortega FB, Gutiérrez A. Anti-aging therapy through fitness enhancement. Clin Interv Aging. 2006;1(3):213-20. doi: 10.2147/ciia.2006.1.3.213. PMID: 18046873; PMCID: PMC2695180.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search