Covid-19 Research

Research Article

OCLC Number/Unique Identifier:

Differences of Relationships between Iodine and Trace Elements in Normal Thyroid and Thyroid Benign Nodules Revealed by X-Ray Fluorescent Analysis

Medicine Group    Start Submission

Vladimir Zaichick*

Volume4-Issue4
Dates: Received: 2023-03-17 | Accepted: 2023-04-04 | Published: 2023-04-07
Pages: 630-640

Abstract

Thyroid Benign Nodules (TBN) are the most common lesions of this endocrine gland. The etiology of TBN is not clear. The aim of this exploratory study was to examine differences in the content of bromine (Br), cooper (Cu), iron (Fe), iodine (I), rubidium (Rb), strontium (Sr), and zinc (Zn), as well as I/Br, I/Cu, I/Fe, I/Rb, I/Sr, and I/Zn content ratios in tissues of normal thyroid and TBN. Thyroid tissue levels of seven Trace Elements (TEs) were prospectively evaluated in 105 apparently healthy persons and in 79 patients with TBN. Measurements were performed using 109Cd and 241Am radionuclide-induced energy-dispersive X-ray fluorescent analysis. Tissue samples were divided into two portions. One was used for morphological study while the other was intended for TEs analysis. It was observed that in TBN the mass fraction of Br, Cu, and Fe were higher, whereas mass fractions of I as well as I/Br, I/Cu, I/Fe, and I/Zn mass fraction ratios were lower than in normal tissues of the thyroid. These changes can potentially be used as TBN markers. Furthermore, it was found that the levels of Br, Cu, Fe, Rb, Sr, and Zn contents in the normal and affected thyroid gland were interconnected and depend on the content of I in thyroid tissue. Because I plays a decisive role in the function of the thyroid gland, the data obtained allow us to conclude that, along with I, at least such TEs as Br, Cu, Fe, Rb, and Zn, if not directly, then indirectly, are involved in the process of thyroid hormone synthesis.

FullText HTML FullText PDF DOI: 10.37871/jbres1719


Certificate of Publication




Copyright

© 2023 Zaichick V. Distributed under Creative Commons CC-BY 4.0

How to cite this article

Zaichick V. Differences of Relationships between Iodine and Trace Elements in Normal Thyroid and Thyroid Benign Nodules Revealed by X-Ray Fluorescent Analysis. J Biomed Res Environ Sci. 2023 Apr 07; 4(4): 630-640. doi: 10.37871/jbres1719, Article ID: JBRES1719, Available at: https://www.jelsciences.com/articles/jbres1719.pdf


Subject area(s)

References


  1. Kassi GN, Evangelopoulou CC, Papapostolou KD, Karga HJ. Benign and malignant thyroid nodules with autoimmune thyroiditis. Arch Endocrinol Metab. 2022 Sept 08;66(4):446-451. doi: 10.20945/2359-3997000000483. Epub 2022 Jun 2. PMID: 35657125.
  2. Ghartimagar D, Ghosh A, Shrestha MK, Thapa S, Talwar OP. Histopathological Spectrum of Non-Neoplastic and Neoplastic Lesions of Thyroid: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc. 2020 Nov 22;58(231):856-861. doi: 10.31729/jnma.5038. PMID: 34506431; PMCID: PMC7775000.
  3. Hoang VT, Trinh CT. A Review of the Pathology, Diagnosis and Management of Colloid Goitre. Eur Endocrinol. 2020 Oct;16(2):131-135. doi: 10.17925/EE.2020.16.2.131. Epub 2020 Oct 6. PMID: 33117444; PMCID: PMC7572169.
  4. Popoveniuc G, Jonklaas J. Thyroid nodules. Med Clin North Am. 2012 Mar;96(2):329-49. doi: 10.1016/j.mcna.2012.02.002. PMID: 22443979; PMCID: PMC3575959.
  5. Zaichick V. Iodine excess and thyroid cancer. J Trace Elem Exp Med. 1998;11(4):508-509.
  6. Zaichick V, Iljina T. Dietary iodine supplementation effect on the rat thyroid 131I blastomogenic action. In: Die Bedentung der Mengen- und Spurenelemente. 18. Arbeitstangung. Friedrich-Schiller-Universität, Jena. 1998. p.294-306.
  7. Kim S, Kwon YS, Kim JY, Hong KH, Park YK. Association between Iodine Nutrition Status and Thyroid Disease-Related Hormone in Korean Adults: Korean National Health and Nutrition Examination Survey VI (2013-2015). Nutrients. 2019 Nov 13;11(11):2757. doi: 10.3390/nu11112757. PMID: 31766270; PMCID: PMC6893705.
  8. Vargas-Uricoechea H, Pinzón-Fernández MV, Bastidas-Sánchez BE, Jojoa-Tobar E, Ramírez-Bejarano LE, Murillo-Palacios J. Iodine Status in the Colombian Population and the Impact of Universal Salt Iodization: A Double-Edged Sword? J Nutr Metab. 2019 Apr 1;2019:6239243. doi: 10.1155/2019/6239243. PMID: 31061736; PMCID: PMC6466914.
  9. Stojsavljević A, Rovčanin B, Krstić D, Borković-Mitić S, Paunović I, Diklić A, Gavrović-Jankulović M, Manojlović D. Risk assessment of toxic and essential trace metals on the thyroid health at the tissue level: The significance of lead and selenium for colloid goiter disease. Expo Health. 2019. doi: 10.1007/s12403-019-00309-9.
  10. Fahim YA, Sharaf NE, Hasani IW, Ragab EA, Abdelhakim HK. Assessment of Thyroid Function and Oxidative Stress State in Foundry Workers Exposed to Lead. J Health Pollut. 2020 Aug 19;10(27):200903. doi: 10.5696/2156-9614-10.27.200903. PMID: 32874759; PMCID: PMC7453815.
  11. Liu M, Song J, Jiang Y, Liu Y, Peng J, Liang H, Wang C, Jiang J, Liu X, Wei W, Peng J, Liu S, Li Y, Xu N, Zhou D, Zhang Q, Zhang J. A case-control study on the association of mineral elements exposure and thyroid tumor and goiter. Ecotoxicol Environ Saf. 2021 Jan 15;208:111615. doi: 10.1016/j.ecoenv.2020.111615. Epub 2020 Nov 12. PMID: 33396135.
  12. Zaichick V. Medical elementology as a new scientific discipline. J Radioanal Nucl Chem. 2006;269:303-309. doi: 10.1007/s10967-006-0383-3.
  13. Moncayo R, Moncayo H. A post-publication analysis of the idealized upper reference value of 2.5 mIU/L for TSH: Time to support the thyroid axis with magnesium and iron especially in the setting of reproduction medicine. BBA Clin. 2017 Mar 19;7:115-119. doi: 10.1016/j.bbacli.2017.03.003. PMID: 28409122; PMCID: PMC5385584.
  14. Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008 Aug;82(8):493-512. doi: 10.1007/s00204-008-0313-y. Epub 2008 May 22. PMID: 18496671.
  15. Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011 Jul;6(7):820-7. doi: 10.4161/epi.6.7.16250. Epub 2011 Jul 1. PMID: 21610324; PMCID: PMC3230540.
  16. Zaĭchik VE, Raibukhin IuS, Mel'nik AD, Cherkashin VI. Neĭtron-aktivatsionnyĭ analiz v izuchenii povedeniia ĭoda v organizme [Neutron-activation analysis in the study of the behavior of iodine in the organism]. Med Radiol (Mosk). 1970 Jan;15(1):33-6. Russian. PMID: 5449249.
  17. Zaĭchik VE, Matveenko EG, Vtiurin BM, Medvedev VS. Intratireoidnyĭ ĭod v diagnostike raka shchitvidnoĭ zhelezy [Intrathyroid iodine in the diagnosis of thyroid cancer]. Vopr Onkol. 1982;28(3):18-24. Russian. PMID: 7064415.
  18. Zaichick VYe, Tsyb AF, Vtyurin BM. Trace elements and thyroid cancer. Analyst. 1995 Mar;120(3):817-21. doi: 10.1039/an9952000817. PMID: 7741233.
  19. Zaichick V Ye, Choporov Yu Ya. Determination of the natural level of human intra-thyroid iodine by instrumental neutron activation analysis. J Radioanal Nucl Chem. 1996;207(1):153-161. doi: 10.1007/BF02036535.
  20. Zaichick V. In vivo and in vitro application of energy-dispersive XRF in clinical investigations: Experience and the future. J Trace Elem Exp Med. 1998;11(4):509-510.
  21. Zaichick V, Zaichick S. Energy-dispersive X-ray fluorescence of iodine in thyroid puncture biopsy specimens. J Trace Microprobe Tech. 1999;17(2):219-232.
  22. Zaichick V. Relevance of, and potentiality for, in vivo intrathyroidal iodine determination. Ann N Y Acad Sci. 2000 May;904:630-1. doi: 10.1111/j.1749-6632.2000.tb06530.x. PMID: 10865819.
  23. Zaichick V, Zaichick S. Normal human intrathyroidal iodine. Sci Total Environ. 1997 Oct 27;206(1):39-56. doi: 10.1016/s0048-9697(97)00215-5. PMID: 9373990.
  24. Zaichick V. Human intrathyroidal iodine in health and non-thyroidal disease. In: New aspects of trace element research. Abdulla M, Bost M, Gamon S, Arnaud P, Chazot G, editors. Smith-Gordon, London, and Nishimura, Tokyo: 1999. p.114-119.
  25. Zaichick V, Zaichick S. Age-related changes of some trace element contents in intact thyroid of females investigated by energy dispersive X-ray fluorescent analysis. Trends Geriatr Health. 2017;1(1):31-38.
  26. Zaichick V, Zaichick S. Age-related changes of some trace element contents in intact thyroid of males investigated by energy dispersive X-ray fluorescent analysis. MOJ Gerontol Ger. 2017;1(5):00028.
  27. Zaichick V, Zaichick S. Age-related changes of Br, Ca, Cl, I, K, Mg, Mn, and Na contents in intact thyroid of females investigated by neutron activation analysis. Curr Updates Aging. 2017;015.
  28. Zaichick V, Zaichick S. Age-related changes of Br, Ca, Cl, I, K, Mg, Mn, and Na contents in intact thyroid of males investigated by neutron activation analysis. J Aging Age Relat Dis. 2017;1(1):1002.
  29. Zaichick V, Zaichick S. Age-related changes of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn contents in intact thyroid of females investigated by neutron activation analysis. J Gerontol Geriatr Med. 2017;3:015.
  30. Zaichick V, Zaichick S. Age-related changes of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn contents in intact thyroid of males investigated by neutron activation analysis. Curr Trends Biomedical Eng Bio sci. 2017;4(4):555644. doi: 10.19080/CTBEB.2017.04.555644.
  31. Zaichick V, Zaichick S. Effect of age on chemical element contents in female thyroid investigated by some nuclear analytical methods. MicroMedicine. 2018;6(1):47-61.
  32. Zaichick V, Zaichick S. Neutron activation and X-ray fluorescent analysis in study of association between age and chemical element contents in thyroid of males. Op Acc J Bio Eng Bio Sci. 2018;2(4):202-212. doi: 10.32474/OAJBEB.2018.02.000144.
  33. Zaichick V, Zaichick S. Variation with age of chemical element contents in females’ thyroids investigated by neutron activation analysis and inductively coupled plasma atomic emission spectrometry. J Biochem Analyt Stud. 2018;3(1):1-10. doi: 10.16966/2576-5833.114.
  34. Zaichick V, Zaichick S. Association between age and twenty chemical element contents in intact thyroid of males. SM Gerontol Geriatr Res. 2018;2(1):1014.
  35. Zaichick V, Zaichick S. Associations between age and 50 trace element contents and relationships in intact thyroid of males. Aging Clin Exp Res. 2018 Sep;30(9):1059-1070. doi: 10.1007/s40520-018-0906-0. Epub 2018 Feb 2. PMID: 29396842.
  36. Zaichick V, Zaichick S. Possible role of inadequate quantities of intra-thyroidal bromine, rubidium and zinc in the etiology of female subclinical hypothyroidism. EC Gynaecology. 2018;7(3):107-115.
  37. Zaichick V, Zaichick S. Possible role of inadequate quantities of intra-thyroidal bromine, calcium and magnesium in the etiology of female subclinical hypothyroidism. Int Gyn and Women’s Health. 2018;1(3). doi: 10.32474/IGWHC.2018.01.000113.
  38. Zaichick V, Zaichick S. Possible role of inadequate quantities of intra-thyroidal cobalt, rubidium and zinc in the etiology of female subclinical hypothyroidism. Womens Health Sci J. 2018;2(1):000108. doi: 10.23880/whsj-16000108.
  39. Zaichick V, Zaichick S. Association between female subclinical hypothyroidism and inadequate quantities of some intra-thyroidal chemical elements investigated by X-ray fluorescence and neutron activation analysis. Gynaecology and Perinatology. 2018;2(4):340-355.
  40. Zaichick V, Zaichick S. Investigation of association between the high risk of female subclinical hypothyroidism and inadequate quantities of twenty intra-thyroidal chemical elements. Clin Res: Gynecol Obstet. 2018;1(1):1-18.
  41. Zaichick V, Zaichick S. Investigation of association between the high risk of female subclinical hypothyroidism and inadequate quantities of intra-thyroidal trace elements using neutron activation and inductively coupled plasma mass spectrometry. Acta Scientific Medical Sciences. 2018;2(9):23-37.
  42. Zaichick V. Comparison of trace element contents in thyroid goiter, adenoma, and thyroiditis investigated using X-ray fluorescent analysis. Oncology and Cancer Screening. 2021;4(1):1-7.
  43. Zaichick V. Comparison of chemical element contents in thyroid goiter, adenoma, and thyroiditis investigated using neutron activation analysis. World Journal of Advanced Research and Reviews. 2021;12(3):98-107. doi: 10.30574/wjarr.2021.12.3.0656.
  44. Zaichick V. Comparison of ten trace element contents in thyroid goiter, adenoma, and thyroiditis investigated using neutron activation analysis. Journal of Clinical Research in Oncology. 2022;4(2):1-9. doi: 10.33309/2639-8230.040201.
  45. Zaichick V. Comparison of chemical element contents in thyroid goiter, adenoma, and thyroiditis investigated using X-ray fluorescence and neutron activation analysis. Saudi Journal of Biomedical Research. 2021;6(12):268-279. doi: 10.36348/sjbr.2021.v06i12.001.
  46. Zaichick V. Relationships between iodine and some trace elements in normal thyroid of females investigated by energy dispersive X-ray fluorescent analysis. Women’s Health Science Journal. 2023;7(1):1-8. doi: 10.23880/whsj-16000171.
  47. Zaichick V. Relationships between iodine and some trace elements in normal thyroid of males investigated by energy dispersive X-ray fluorescent analysis. Journal of Clinical Oncology Reports. 2023;2(1):1-9.
  48. Zaichick V, Zaichick S. Instrumental effect on the contamination of biomedical samples in the course of sampling. The Journal of Analytical Chemistry. 1996;51(12):1200-1205.
  49. Zaichick V, Tsislyak YuV. A simple device for biosample lyophilic drying. Lab Delo. 1978;2:109-110.
  50. Zaichick V. Applications of synthetic reference materials in the medical Radiological Research Centre. Fresenius J Anal Chem. 1995;352:219-223.
  51. Zhu H, Wang N, Zhang Y, Wu Q, Chen R, Gao J, Chang P, Liu Q, Fan T, Li J, Wang J, Wang J. Element contents in organs and tissues of Chinese adult men. Health Phys. 2010 Jan;98(1):61-73. doi: 10.1097/HP.0b013e3181bad921. PMID: 19959952.
  52. Salimi J, Moosavi K, Vatankhah S, Yaghoobi A. Investigation of heavy trace elements in neoplastic and non-neoplastic human thyroid tissue: A study by proton induced X-ray emissions. Iran J Radiat Res. 2004;1(4):211-216.
  53. Ataullakhanov IA. Vozrastnye izmeneniia v soderzhanii margantsa, kobal'ta, medi, tsinka i zheleza zhelezakh vnutrenneĭ sekretsii zhenshchin [Age changes in the content of manganese, cobalt, copper, zinc and iron in the endocrine glands of women]. Probl Endokrinol (Mosk). 1969 Mar-Apr;15(2):98-102. Russian. PMID: 5807109.
  54. Reddy SB, Charles MJ, Kumar MR, Reddy BS, Anjaneyulu Ch, Raju GJN, Sundareswar B, Vijayan V. Trace elemental analysis of adenoma and carcinoma thyroid by PIXE method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2002;196(3-4):333-339. doi: 10.1016/S0168-583X(02)01292-2.
  55. Neĭmark II, Timoshnikov VM. O razvitii raka shchitovidnoĭ zhelezy u lits, prozhivaiushchikh v ochage zobnoĭ endemii [Development of thyroid cancer in persons living in the endemic goiter area]. Probl Endokrinol (Mosk). 1978 May-Jun;24(3):28-32. Russian. PMID: 674124.
  56. Zabala J, Carrión N, Murillo M, Quintana M, Chirinos J, Seijas N, Duarte L, Brätter P. Determination of normal human intrathyroidal iodine in Caracas population. J Trace Elem Med Biol. 2009;23(1):9-14. doi: 10.1016/j.jtemb.2008.11.002. Epub 2009 Jan 23. PMID: 19203711.
  57. Boulyga SF, Zhuk IV, Lomonosova EM, Kanash NV, Bazhanova NN. Determination of microelements in thyroids of the inhabitants of Belarus by neutron activation analysis using the k0-method. J Radioanal Nucl Chem. 1997;222(1-2):11-14. doi: 10.1007/BF02034238.
  58. TIPTON IH, COOK MJ. Trace elements in human tissue. II. Adult subjects from the United States. Health Phys. 1963 Feb;9:103-45. doi: 10.1097/00004032-196302000-00002. PMID: 13985137.
  59. Maeda K, Yokode Y, Sasa Y, Kusuyama H, Uda M. Multielemental analysis of human thyroid glands using Particle Induced X-ray Emission (PIXE). Nucl Instrum Methods Phys Res B. 1987;22(1-3):188-190. doi: 10.1016/0168-583X(87)90323-5.
  60. TURETSKAIA ES. [Studies on goitrous thyroid glands for iodine and bromine content]. Probl Endokrinol Gormonoter. 1961 Mar-Apr;7:75-80. Russian. PMID: 13778682.
  61. Yaman M, Akdeniz I. Sensitivity enhancement in flame atomic absorption spectrometry for determination of copper in human thyroid tissues. Anal Sci. 2004 Sep;20(9):1363-6. doi: 10.2116/analsci.20.1363. PMID: 15478350.
  62. Błażewicz A, Orlicz-Szczęsna G, Szczęsny P, Prystupa A, Grzywa-Celińska A, Trojnar M. A comparative analytical assessment of iodides in healthy and pathological human thyroids based on IC-PAD method preceded by microwave digestion. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Mar 15;879(9-10):573-8. doi: 10.1016/j.jchromb.2011.01.008. Epub 2011 Jan 14. PMID: 21330222.
  63. LeBlanc AD, Bell RL, Johnson PC. Measurement of 127I concentration in thyroid tissue by x-ray fluorescence. J Nucl Med. 1973 Nov;14(11):816-9. PMID: 4743035.
  64. Kvícala J, Havelka J, Nĕmec J, Zeman V. Selenium and rubidium changes in subjects with pathologically altered thyroid. Biol Trace Elem Res. 1992 Jan-Mar;32:253-8. doi: 10.1007/BF02784608. PMID: 1375062.
  65. Antonova MV, Elinova VG, Voitekhovskaya YaV. Some trace element contents in thyroid and water in endemic goiter region. Zdravookhranenie BSSR. 1966;9:42-44.
  66. Zagrodzki P, Nicol F, Arthur JR, Słowiaczek M, Walas S, Mrowiec H, Wietecha-Posłuszny R. Selenoenzymes, laboratory parameters, and trace elements in different types of thyroid tumor. Biol Trace Elem Res. 2010 Apr;134(1):25-40. doi: 10.1007/s12011-009-8454-2. Epub 2009 Jul 14. PMID: 19597722.
  67. Katoh Y, Sato T, Yamamoto Y. Determination of multielement concentrations in normal human organs from the Japanese. Biol Trace Elem Res. 2002 Winter;90(1-3):57-70. doi: 10.1385/BTER:90:1-3:57. PMID: 12666826.
  68. Schroeder HA, Tipton IH, Nason AP. Trace metals in man: strontium and barium. J Chronic Dis. 1972 Sep;25(9):491-517. doi: 10.1016/0021-9681(72)90150-6. PMID: 4647214.
  69. Zaichick V. Comparison of copper, iron, iodine, rubidium, strontium and zinc contents in thyroid tissue adjacent to thyroid malignant and benign nodules. British Journal of Healthcare and Medical Research. 2022;9(1):88-97. doi: 10.14738/jbemi.91.11752.
  70. Zaichick V. Comparison of calcium, chlorine, iodine, potassium, magnesium, manganese, and sodium in thyroid tissue adjacent to thyroid malignant and benign nodules. Biomedical Journal of Scientific & Technical Research 2022;42(1):33233-33239. doi: 10.26717/BJSTR.2022.42.006687.
  71. Zaichick V. Application of neutron activation analysis for the comparison of eleven trace elements contents in thyroid tissue adjacent to thyroid malignant and benign nodules. International Journal of Radiology Sciences. 2022;4(1):6-12.
  72. Zaichick V. Comparison of nineteen chemical elements in thyroid tissue adjacent to thyroid malignant and benign nodules using nuclear analytical methods. Journal of Medical and Biomedical Discoveries. 2022;5(1):121. doi: 10.29011/2688-8718.100021.
  73. Zaichick V. Comparison of nineteen chemical elements in thyroid tissue adjacent to thyroid malignant and benign nodules using neutron activation analysis and inductively coupled plasma atomic emission spectrometry. International Journal of Multidisciplinary and Current Educational Research. 2022;4(1):219-229.
  74. Zaichick V. Comparison of thirty trace elements contents in thyroid tissue adjacent to thyroid malignant and benign nodules. Archives of Clinical Case Studies and Case Reports. 2022;3(1):280-289.
  75. Zaichick V. Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques. IAEA, Vienna: 1997. p.123-133.
  76. Zaichick V, Zaichick S. A search for losses of chemical elements during freeze-drying of biological materials. J Radioanal Nucl Chem. 1997;218(2):249-253. doi: 10.1007/BF02039345.
  77. Zaichick V. Losses of chemical elements in biological samples under the dry aching process. Trace Elements in Medicine. 2004;5(3):17-22.


Comments


Swift, Reliable, and studious. We aim to cherish the world by publishing precise knowledge.

  • asd
  • Brown University Library
  • University of Glasgow Library
  • University of Pennsylvania, Penn Library
  • University of Amsterdam Library
  • The University of British Columbia Library
  • UC Berkeley’s Library
  • MIT Libraries
  • Kings College London University
  • University of Texas Libraries
  • UNSW Sidney Library
  • The University of Hong Kong Libraries
  • UC Santa Barbara Library
  • University of Toronto Libraries
  • University of Oxford Library
  • Australian National University
  • ScienceOpen
  • UIC Library
  • KAUST University Library
  • Cardiff University Library
  • Ball State University Library
  • Duke University Library
  • Rutgers University Library
  • Air University Library
  • UNT University of North Texas
  • Washington Research Library Consortium
  • Penn State University Library
  • Georgetown Library
  • Princeton University Library
  • Science Gate
  • Internet Archive
  • WashingTon State University Library
  • Dimensions
  • Zenodo
  • OpenAire
  • Index Copernicus International
  • icmje
  •  International Scientific Indexing (ISI)
  • Sherpa Romeo
  • ResearchGate
  • Universidad De Lima
  • WorldCat
  • JCU Discovery
  • McGill
  • National University of Singepore Libraries
  • SearchIT
  • Scilit
  • SemantiScholar
  • Base Search
  • VU
  • KB
  • Publons
  • oaji
  • Harvard University
  • sjsu-library
  • UWLSearch
  • Florida Institute of Technology
  • CrossRef
  • LUBsearch
  • Universitat de Paris
  • Technical University of Denmark
  • ResearchBIB
  • Google Scholar
  • Microsoft Academic Search