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Uncertainty-Aware Machine Learning for
Ambient Air-Pollution Exposure Surfaces in
Biomedical Research: From Data Fusion to
Neuroepidemiology-Ready Inference
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ITMO University, Lomonosova St., 9, 191002, Saint Petersburg, Russia

Abstract

Ambient air pollution remains a major, preventable driver of cardio
metabolic and neurological disease burden. For biomedical studies, the
central methodological bottleneck is not only prediction of pollutant
concentrations, but trustworthy exposure assessment: leakage-safe
validation, Uncertainty Quantification (UQ), transportable models in low-
monitor regions, and transparent propagation of exposure uncertainty
into health-effect estimates. This mini-review synthesizes recent
advances in global and regional PM2.5 mapping, spatiotemporal deep
learning, virtual monitoring stations, and gap-filling, and links these
developments to the rapidly expanding evidence on dementia risk. We
provide a practical checklist and worked calculations that translate
modern Machine Learning (ML) exposure products into epidemiology-
ready inputs.

Usually Look for)

Exposure surfaces: ML models must be evaluated with spatial

and temporal cross-validation that matches the target use (e.g.,
out-of-region prediction), not only random splits [1,2].

Uncertainty: point predictions areinsufficient; credible intervals
(or full predictive distributions) are needed to propagate

exposure error into health-effect inference [3].
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geophysical priors reduce degradation far
from monitors.

* Open data: harmonized monitoring streams
(e.g., OpenAQ) and standardized metadata
improve reproducibility, but versioning and
API changes must be documented [4].

* Biomedical relevance: recent systematic
reviews and large cohorts support
associations between long-term pollution
exposure and incident dementia, motivating
higher-resolution and Dbetter-validated
exposure models [5-9].

Introduction (Why “ML for air
quality” is Now a Biomedical
Methods Topic)

The 2021 WHO Global Air Quality Guidelines
substantially tightened recommended levels
for key pollutants, including PM,, (Annual
mean 5pg/m3; 24-hour 15pg/m3) [10]. In
Europe, updated indicators continue to report
a large burden attributable to PM,, exposures
[2]. Regulatory tightening (e.g., the EU recast
Ambient Air Quality Directive) and new
accountability mechanisms (Including legal
avenues for affected citizens) increase demand
for transparent, uncertainty-aware evidence
[11-15].

For biomedical research, the key deliverable
is an exposure surface: a spatial-temporal
field x(s,t) that can be linked to participants by
location history. Modern surfaces are typically
produced by data fusion (Monitors + satellite
AOD + chemical transport models + meteorology
+ land use) and increasingly by spatiotemporal
deep learning [16-18] However, an exposure
model that minimizes mean squared error
can still be unsafe for epidemiology if it leaks
information across space/time, fails in low-
monitor regions, or provides no UQ.

JOURNAL OF BIOMEDICAL RESEARCH & ENVIRONMENTAL SCIENCES Issh:| 2766-2276

Core Definitions (Terms Used
Consistently in This Paper)

* Exposure surface x(s,t): Estimated
pollutant concentration at location s and
time t, aligned to the health-study time
scale (Daily, monthly, annual).

« Data fusion: Combining multiple
information sources (Monitors, satellites,
CTMs, land-use predictors) to estimate
x(s,t) [18,19].

* Spatial cross-validation: Validation that
withholds entire regions (or monitors)
to test transportability; contrasts with
random splits that can overestimate
performance [1,2].

* Uncertainty quantification (UQ):
Reporting predictive uncertainty (e.g.,
standard deviation o(s,t) or predictive
intervals) and propagating it into
downstream analyses [3].

What the Last Wave of Global
PM,. ML Mapping Changed
(2019-2025)

Three trends dominate recent high-impact
exposure modelling:

Global, long-term PM, . fields with
consistent methodology

High-resolution, long-term global PM,,
products now combine satellites, models, and
monitors with statistical/ML layers, enabling
decade-scale exposure assessment [16-18].
These surfaces are attractive for cohort studies
because they offer wide coverage and consistent
back-casting.

“Physics + ML’ to improve low-monitor
transportability

Purely data-driven models often degrade

Betekhtin AA. (2025) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2245
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far from monitors. Incorporating geophysical
a priori estimates into deep learning explicitly
targets this failure mode [1]. The implication
for biomedical studies is straightforward:
improved out-of-sample performance reduces
differential exposure misclassification between
urban (Monitor-rich) and rural (Monitor-
sparse) participants.

Epidemiology-facing uQ and
reproducibility

Methodological work increasingly
emphasizes uncertainty-aware fusion and

explicit validation protocols [3]. In parallel,
open monitoring infrastructures facilitate
reproducible pipelines, but only if API versions,
licensing, and provenance are recorded [4,20].

Practical checklist for an epidemiology-
ready ML exposure model

Table 1 summarizes failure modes that
frequently trigger reviewer pushback.

Worked Examples / Calculations
(With Sanity Checks)

Example 1: Exceedance probability using
a predictive distribution

Suppose an ML surface provides, for a
given day and location, a predictive mean pu
and standard deviation o for daily PM,,. To

Table 1: Epidemiology-ready checklist for ML exposure surfaces.

Item

Target time scale

Spatial CV

Uncertainty
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estimate the probability of exceeding the WHO
24-hour guideline g = 15pg/m3, a simple (Often
used) approximation is a normal predictive
distribution:

g — i
P(exceed),~ 1 — ‘T’( = ) (1)
where @ is the standard normal CDF.

Numerical example (units and sanity check).
Let u =12pg/m3and ¢ = 4pg/ms3. Then

g—p 1512
o 4
(Exceed) ~1 - ®(0.75) =1 - 0.773 = 0.227.

Z =

=075, P

Sanity check: since p < g, exceedance
probability should be < 0.5; 22.7% is plausible.

Example 2: Attenuation of a health-effect
estimate by classical exposure error

Let the (Unobserved) true long-term
exposure be X*and the estimated exposure be
X = X" + ¢ with independent noise ¢. In classical
measurement error, regression coefficients are
attenuated approximately by
Var(X™)

A=
Var(X*) + Var(e),

(2)

Thus, a “true” association p*may be observed as
B = AB*. This is a central motivation for UQ and
transportability-focused modelling.

Numerical example. Assume between-person

What to report / do

Define t (daily / monthly / annual) and justify for disease latency (e.g.,

dementia: multi-year means) [5,6]

Report region-holdout / monitor-holdout performance (Not only random CV)

(1.2]

Provide predictive intervals or distributions; show calibration (Coverage) [3]

Document monitoring sources and versions (e.g., OpenAQ v3; retired v1/v2

Data provenance
Missingness

Non-stationarity

Leakage controls

endpoints) [4]

Describe gap-filling strategy for monitors/time series if used [25]
Address trend/drift (Policy changes, emissions shifts) in training/validation

(18]

Ensure no future data inform past predictions; avoid spatial “bleed” from

nearby monitors in random splits [2]
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long-term exposure variability SD(X*) = 6ug/m3,
so Var(X*) = 36. If the exposure model has RMSE
z 3ug/m3, a rough proxy is Var(e) = 9. Then

36

A=
3649

=0.80

Sanity check: better models (Smaller RMSE)
increase . toward 1, reducing attenuation.

Example 3: Monte Carlo propagation of
exposure uncertainty into a Cox model

When an exposure surface provides (u,oc,) for
participant i, a simple uncertainty-propagation
workflow is:

I. For m = 1,..,M draws, sample ¥." ~ N (. o

(or use the model’s predictive distribution).

2. Fit the health model (e.g., Cox) to each draw
to obtain ",

3. Report the distribution of g™ (mean, CI),
separating statistical uncertainty from
exposure uncertainty.

Why Dementia is a Compelling
“biomedical endpoint” for ML
Exposure Methods

The evidence base linking long-term ambient
pollution to incident dementia has expanded
rapidly in recent years. A 2025 systematic review
and meta-analysis synthesized the growing
observational literature [21], complementing
earlier broad syntheses. Large cohort studies
report associations between long-term PM, /
NO, exposure and dementia/Alzheimer’s
disease incidence. Mechanistically adjacent
neurodegenerative outcomes are also being
investigated; for example, a 2025 Science
study reported links between long-term PM,,
exposures and Lewy body dementia.

For such endpoints, the methodological
requirement is stronger than for short-latency
outcomes: multi-year averaging, sensitivity
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analyses to mobility, and robust out-of-region
exposure prediction become essential. Hence,
“physics + ML” transportability gains and UQ
are not cosmetic features; they directly affect
bias and interpretability.

Emerging Methods That
Reviewers Now Expect You to
Cite

Beyond global mapping, biomedical
submissions increasingly cite:
* Forecasting architectures that couple

decomposition + graph learning + sequence
models (Useful for short-term health
endpoints and operational warnings).

* Virtual monitoring stations that estimate
concentrations in unmonitored locations

using ML (Relevant when residential
geocoding is fine-grained).
* Gap-filling benchmarks for incomplete

monitoring time series (Important if you
build local fusion models from raw monitors).

 Map recovery / sparse sensing concepts
that formalize reconstruction from limited
Sensors.

* Policy context that motivates thresholds
and public-health interpretation (WHO
guidelines; EU Directive 2024/2881) [22-31].

Conclusion

Machine learning has shifted ambient air-
pollution exposure assessment from coarse
averages to high-resolution, global and regional
surfaces. For biomedical research, the next bar
is trust: spatially honest validation, calibrated
uncertainty, and transparent propagation
of exposure error into health models. These
requirements align with regulatory tightening
and a rapidly growing neuroepidemiology
literature on dementia risk. A pragmatic path for

Betekhtin AA. (2025) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2245
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submissions in ML-focused biomedical journals
is to present exposure modelling as an inference
pipeline rather than a pure prediction task: data
provenance (e.g., OpenAQ), transportability
(Physics + ML), UQ, and sensitivity analyses that
match the disease time scale.

Data Availability Statement

This mini-review used publicly accessible

documentation and published literature. No new
human subject data were collected.
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