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MINI REVIEW

Uncertainty-Aware Machine Learning for 
Ambient Air-Pollution Exposure Surfaces in 
Biomedical Research: From Data Fusion to 
Neuroepidemiology-Ready Inference
Betekhtin AA*

ITMO University, Lomonosova St., 9, 191002, Saint Petersburg, Russia

Abstract
Ambient air pollution remains a major, preventable driver of cardio 

metabolic and neurological disease burden. For biomedical studies, the 
central methodological bottleneck is not only prediction of pollutant 
concentrations, but trustworthy exposure assessment: leakage-safe 
validation, Uncertainty Quantifi cation (UQ), transportable models in low-
monitor regions, and transparent propagation of exposure uncertainty 
into health-effect estimates. This mini-review synthesizes recent 
advances in global and regional PM2.5 mapping, spatiotemporal deep 
learning, virtual monitoring stations, and gap-fi lling, and links these 
developments to the rapidly expanding evidence on dementia risk. We 
provide a practical checklist and worked calculations that translate 
modern Machine Learning (ML) exposure products into epidemiology-
ready inputs.
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Key Points (What Biomedical Reviewers 
Usually Look for)
• Exposure surfaces: ML models must be evaluated with spatial 

and temporal cross-validation that matches the target use (e.g., 
out-of-region prediction), not only random splits [1,2].

• Uncertainty: point predictions are insuffi  cient; credible intervals 
(or full predictive distributions) are needed to propagate 
exposure error into health-eff ect inference [3].

• Transportability: hybrid “physics + ML” approaches and 
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geophysical priors reduce degradation far 
from monitors.

• Open data: harmonized monitoring streams 
(e.g., OpenAQ) and standardized metadata 
improve reproducibility, but versioning and 
API changes must be documented [4].

• Biomedical relevance: recent systematic 
reviews and large cohorts support 
associations between long-term pollution 
exposure and incident dementia, motivating 
higher-resolution and better-validated 
exposure models [5-9].

Introduction (Why “ML for air 
quality” is Now a Biomedical 
Methods Topic)

The 2021 WHO Global Air Quality Guidelines 
substantially tightened recommended levels 
for key pollutants, including PM2.5 (Annual 
mean 5μg/m3; 24-hour 15μg/m3) [10]. In 
Europe, updated indicators continue to report 
a large burden attributable to PM2.5 exposures 
[2]. Regulatory tightening (e.g., the EU recast 
Ambient Air Quality Directive) and new 
accountability mechanisms (Including legal 
avenues for aff ected citizens) increase demand 
for transparent, uncertainty-aware evidence 
[11-15].

For biomedical research, the key deliverable 
is an exposure surface: a spatial–temporal 
fi eld x(s,t) that can be linked to participants by 
location history. Modern surfaces are typically 
produced by data fusion (Monitors + satellite 
AOD + chemical transport models + meteorology 
+ land use) and increasingly by spatiotemporal 
deep learning [16-18] However, an exposure 
model that minimizes mean squared error 
can still be unsafe for epidemiology if it leaks 
information across space/time, fails in low-
monitor regions, or provides no UQ.

Core Defi nitions (Terms Used 
Consistently in This Paper)

• Exposure surface x(s,t): Estimated 
pollutant concentration at location s and 
time t, aligned to the health-study time 
scale (Daily, monthly, annual).

• Data fusion: Combining multiple 
information sources (Monitors, satellites, 
CTMs, land-use predictors) to estimate 
x(s,t) [18,19].

• Spatial cross-validation: Validation that 
withholds entire regions (or monitors) 
to test transportability; contrasts with 
random splits that can overestimate 
performance [1,2].

• Uncertainty quantifi cation (UQ): 
Reporting predictive uncertainty (e.g., 
standard deviation (s,t) or predictive 
intervals) and propagating it into 
downstream analyses [3].

What the Last Wave of Global 
PM2.5 ML Mapping Changed 
(2019-2025)

Three trends dominate recent high-impact 
exposure modelling:

Global, long-term PM2.5 fi elds with 
consistent methodology

High-resolution, long-term global PM2.5 

products now combine satellites, models, and 
monitors with statistical/ML layers, enabling 
decade-scale exposure assessment [16-18]. 
These surfaces are attractive for cohort studies 
because they off er wide coverage and consistent 
back-casting.

“Physics + ML” to improve low-monitor 
transportability

Purely data-driven models often degrade 
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far from monitors. Incorporating geophysical 
a priori estimates into deep learning explicitly 
targets this failure mode [1]. The implication 
for biomedical studies is straightforward: 
improved out-of-sample performance reduces 
diff erential exposure misclassifi cation between 
urban (Monitor-rich) and rural (Monitor-
sparse) participants.

Epidemiology-facing UQ and 
reproducibility

Methodological work increasingly 
emphasizes uncertainty-aware fusion and 
explicit validation protocols [3]. In parallel, 
open monitoring infrastructures facilitate 
reproducible pipelines, but only if API versions, 
licensing, and provenance are recorded [4,20].

Practical checklist for an epidemiology-
ready ML exposure model

Table 1 summarizes failure modes that 
frequently trigger reviewer pushback.

Worked Examples / Calculations 
(With Sanity Checks)
Example 1: Exceedance probability using 
a predictive distribution

Suppose an ML surface provides, for a 
given day and location, a predictive mean μ 
and standard deviation  for daily PM2.5. To 

estimate the probability of exceeding the WHO 
24-hour guideline g = 15μg/m3 , a simple (Often 
used) approximation is a normal predictive 
distribution:

P(exceed),  (1)

where  is the standard normal CDF.

Numerical example (units and sanity check). 
Let μ = 12μg/m3 and  = 4μg/m3. Then

(Exceed) ≈ 1 − (0.75) ≈ 1 − 0.773 = 0.227.

Sanity check: since μ < g, exceedance 
probability should be < 0.5; 22.7% is plausible.

Example 2: Attenuation of a health-effect 
estimate by classical exposure error

Let the (Unobserved) true long-term 
exposure be X and the estimated exposure be 
X = X +  with independent noise . In classical 
measurement error, regression coeffi  cients are 
attenuated approximately by

 (2)

Thus, a “true” association  may be observed as 
 ≈ . This is a central motivation for UQ and 
transportability-focused modelling.

Numerical example. Assume between-person 

Table 1: Epidemiology-ready checklist for ML exposure surfaces.
Item What to report / do

Target time scale
Defi ne t (daily / monthly / annual) and justify for disease latency (e.g., 

dementia: multi-year means) [5,6]

Spatial CV
Report region-holdout / monitor-holdout performance (Not only random CV) 

[1,2]
Uncertainty Provide predictive intervals or distributions; show calibration (Coverage) [3]

Data provenance
Document monitoring sources and versions (e.g., OpenAQ v3; retired v1/v2 

endpoints) [4]
Missingness Describe gap-fi lling strategy for monitors/time series if used [25]

Non-stationarity
Address trend/drift (Policy changes, emissions shifts) in training/validation 

[18]

Leakage controls
Ensure no future data inform past predictions; avoid spatial “bleed” from 

nearby monitors in random splits [2]
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long-term exposure variability SD(X) = 6μg/m3, 
so Var(X) = 36. If the exposure model has RMSE 
≈ 3μg/m3, a rough proxy is Var() ≈ 9. Then

Sanity check: better models (Smaller RMSE) 
increase  toward 1, reducing attenuation.

Example 3: Monte Carlo propagation of 
exposure uncertainty into a Cox model

When an exposure surface provides (μi,i) for 
participant i, a simple uncertainty-propagation 
workfl ow is:

 For m = 1,...,M draws, sample  

(or use the model’s predictive distribution).

 Fit the health model (e.g., Cox) to each draw 
to obtain ˆ(m).

 Report the distribution of ˆ(m) (mean, CI), 
separating statistical uncertainty from 
exposure uncertainty.

Why Dementia is a Compelling 
“biomedical endpoint” for ML 
Exposure Methods

The evidence base linking long-term ambient 
pollution to incident dementia has expanded 
rapidly in recent years. A 2025 systematic review 
and meta-analysis synthesized the growing 
observational literature [21], complementing 
earlier broad syntheses. Large cohort studies 
report associations between long-term PM2.5/
NO2 exposure and dementia/Alzheimer’s 
disease incidence. Mechanistically adjacent 
neurodegenerative outcomes are also being 
investigated; for example, a 2025 Science 
study reported links between long-term PM2.5 

exposures and Lewy body dementia.

For such endpoints, the methodological 
requirement is stronger than for short-latency 
outcomes: multi-year averaging, sensitivity 

analyses to mobility, and robust out-of-region 
exposure prediction become essential. Hence, 
“physics + ML” transportability gains and UQ 
are not cosmetic features; they directly aff ect 
bias and interpretability.

Emerging Methods That 
Reviewers Now Expect You to 
Cite

Beyond global mapping, biomedical 
submissions increasingly cite:

• Forecasting architectures that couple 
decomposition + graph learning + sequence 
models (Useful for short-term health 
endpoints and operational warnings).

• Virtual monitoring stations that estimate 
concentrations in unmonitored locations 
using ML (Relevant when residential 
geocoding is fi ne-grained).

• Gap-fi lling benchmarks for incomplete 
monitoring time series (Important if you 
build local fusion models from raw monitors).

• Map recovery / sparse sensing concepts 
that formalize reconstruction from limited 
sensors.

• Policy context that motivates thresholds 
and public-health interpretation (WHO 
guidelines; EU Directive 2024/2881) [22-31].

Conclusion
Machine learning has shifted ambient air-

pollution exposure assessment from coarse 
averages to high-resolution, global and regional 
surfaces. For biomedical research, the next bar 
is trust: spatially honest validation, calibrated 
uncertainty, and transparent propagation 
of exposure error into health models. These 
requirements align with regulatory tightening 
and a rapidly growing neuroepidemiology 
literature on dementia risk. A pragmatic path for 
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submissions in ML-focused biomedical journals 
is to present exposure modelling as an inference 
pipeline rather than a pure prediction task: data 
provenance (e.g., OpenAQ), transportability 
(Physics + ML), UQ, and sensitivity analyses that 
match the disease time scale.

Data Availability Statement
This mini-review used publicly accessible 

documentation and published literature. No new 
human subject data were collected.
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