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ORIGINAL ARTICLE

Re-evaluating Intra-Islet Paracrine 
Signaling: Precision, Pulsatility and the 
Path toward Mechanistic Clarity
Alejandro Tamayo-Garcia, Dayleen Hakim-Rodriguez and Rayner 
Rodriguez-Diaz*
University of Miami, Miller School of Medicine, Department of Medicine, Division of Endocrinology, USA

Abstract
The pancreas regulates glucose homeostasis through the rhythmic secretion of 

insulin and glucagon into the portal circulation-an essential process that is disrupted 
early in the pathogenesis of type 2 diabetes. While the metabolic relevance of this 
pulsatile hormone release is well recognized, the underlying regulatory mechanisms 
remain incompletely understood. This review highlights emerging insights that redefi ne 
pancreatic islets not merely as hormone-producing cell clusters, but as integrated 
oscillatory networks, capable of coordinating hormone output via tightly controlled intra-
islet paracrine signaling.

We emphasize the critical role of cell-to-cell communication-including interactions 
between endocrine and non-endocrine cells-in shaping the timing, amplitude, and 
composition of hormone pulses. Recent fi ndings demonstrate that these intra-islet 
signals establish systemic glucose thresholds in both mice and humans, thresholds that 
delineate normoglycemia, prediabetes, and diabetes. Despite their clinical relevance, 
these mechanisms remain underexplored.

We discuss conceptual advances such as Post-Inhibitory Rebound (PIR) responses 
and propose that systemic hormone pulsatility emerges from coordinated activity 
across endocrine, neural, and vascular networks. Additionally, we address experimental 
limitations including receptor desensitization, ligand promiscuity, and artifacts 
introduced by islet isolation and static incubation assays, which lack the temporal 
resolution to capture dynamic paracrine interactions.

To advance this fi eld, we advocate for the adoption of high-resolution perifusion 
systems and live-cell biosensor imaging. These technologies offer integrated spatial, 
temporal, and functional insights that are essential for uncovering the mechanisms 
governing hormone pulsatility and its dysregulation in diabetes.
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Introduction

Why pulsatility and paracrinicity deserve renewed attention

The precision and coordination of hormone secretion from the endocrine 
pancreas-most notably the pulsatile delivery of insulin and glucagon into 
the portal vein-remains one of the most sophisticated yet persistently 
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underappreciated regulatory mechanisms in systemic 
glucose homeostasis [1-3]. These hormones are 
released in coordinated oscillations approximately 
every 4-10 minutes, delivering rhythmic signals 
directly to the liver that enhance insulin sensitivity 
and prevent receptor desensitization. Underlying 
this dynamic is a network of intra-islet paracrine 
signaling, wherein α, β, and δ cells communicate locally 
through the release of hormones and other factors to 
fi ne-tune each other's activity in real time. Although 
widely accepted as essential for the maintenance of 
euglycemia, the physiological processes that underlie 
this tightly orchestrated secretion-particularly those 
involving intra-islet paracrine signaling-remain 
inadequately explored and, in many respects, poorly 
characterized.

Emerging evidence increasingly supports the 
idea that temporal disruptions in islet hormone 
release represent some of the earliest detectable 
abnormalities in the development of type 2 diabetes. 
However, despite decades of research, there remains 
no clear consensus on the mechanisms that govern 
hormone pulsatility within the portal circulation [4-
6]. This gap highlights the urgent need for a more 
mechanistic and temporally precise understanding 
of how intra-islet communication governs the 
oscillatory nature of hormone output.

Beyond the islet: A systemic view of pulsatility

Pulsatility is a core characteristic that runs 
through all levels of biology—from the tiniest 
atomic vibrations and molecular reactions to gene 
expression patterns, the rhythmic behaviors of 
tissues, and organ system coordination [7,8]. It’s 
likely that various systems-endocrine, neural, and 
vascular-work together to shape hormone signals by 
integrating inputs from both cellular and subcellular 
levels [9-12]. 

The liver, as the fi rst stop for hormones coming 
from the islets, is in a prime position to interpret the 
timing and content of these pulses. When this delivery 
system-especially its rhythmic nature-is disrupted, 
it throws off  the liver’s ability to regulate glucose 
output. However, the underlying mechanisms remain 
unclear [1,3]. What’s worth considering is that even 
though islets are highly specialized micro-organs 
capable of generating their own secretory rhythms, 
they may not be the ones entirely in control-the 
pace of this physiological symphony might be set 
elsewhere.

Paracrine signaling: Central or peripheral in 
glucoregulation?

Islets should not merely be seen as hormone-
producing clusters but as dynamic, self-organizing 
networks. They possess intrinsic oscillatory 
capabilities driven by intracellular mechanisms-
such as calcium signaling, metabolic fl uxes, and ion 
channel activity-that generate rhythmic hormone 
output. These processes are stabilized and coordinated 
by intercellular communication and feedback loops. 
[13-16]. Within this network, intra-islet paracrine 
interactions act as the fi ne-tuning machinery for 
hormonal precision. These local interactions integrate 
systemic inputs and control the timing, amplitude, 
and composition of hormonal pulses delivered to the 
portal vein [17-20]. 

Recent fi ndings highlight that this paracrine 
crosstalk helps set glycemic thresholds in both mice 
and humans—a key step in maintaining glucose 
balance [21,22]. This underscores the importance 
of local signaling in regulating blood sugar levels 
and suggests a potential link to conditions like 
prediabetes. In fact, mounting evidence points to 
disrupted paracrine communication as a possible 
trigger for the transition from normal glucose levels 
to prediabetes [23-26]. Yet, despite this, we still 
lack detailed mechanistic studies explaining how 
paracrine feedback shapes hormone pulsatility-a 
critical and overlooked gap in diabetes research.

Limitations of current approaches: Is the model 
still fi t for purpose?

Much of what we currently understand about 
intra-islet communication comes from experimental 
strategies that, while methodologically accessible, 
fail to capture the dynamic complexity intrinsic to 
oscillatory systems. Prevailing models often lean 
heavily on data from static incubation assays or 
similar setups with limited temporal resolution-
tools that may be convenient but are poorly suited 
for probing the inherently time-sensitive secretory 
behavior of islet cells [17-20]. These methods can 
imply potential signaling relationships, but they fall 
short in resolving the fast, rhythmic fl uctuations that 
defi ne physiological hormone release in real time.

A substantial body of work has investigated 
the paracrine eff ects of a wide array of ligands-
Acetylcholine, Glutamate, Serotonin, GABA, 
Epinephrine, Urocortin3, Ghrelin, ATP, Zn²⁺, and 
others-each adding a piece to the puzzle of how 
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islet cells modulate one another's function [27-34]. 
Additionally, the paracrine interplay among the islet’s 
core hormones-insulin, glucagon, and somatostatin-
has been examined in depth [35-38]. Yet despite the 
breadth of this work, a persistent limitation remains 
without dynamic, temporally resolved assays, these 
fi ndings off er only a partial view of a system that is 
inherently rhythmic and coordinated in time [35-38].

The danger of incomplete models

Despite their utility, many current models of intra-
islet signaling fail to incorporate key physiological 
features, particularly those tied to cellular dynamics. 
One notable oversight is the exclusion of post-
inhibitory rebound excitation responses-commonly 
referred to as Post-Inhibitory Responses (PIR). This 
phenomenon, well-documented in neural, cardiac, 
and other oscillatory systems [39-42], represents 
a fundamental mechanism through which cells can 
regain activity following inhibitory input. Its absence 
from islet models may obscure critical feedback 
loops and dynamic behaviors that are central to the 
generation and regulation of pulsatile hormone 
release.

Toward experimental precision: Tools and 
technologies

Two studies stand out in off ering mechanistic 
depth: those involving Urocortin3 and Ghrelin 
[27,28]. These ligands selectively activate delta cells 
via distinct GPCRs, triggering somatostatin release. 
Transcriptomic data supports this specifi city, yet 
both studies relied predominantly on static assays-
underscoring the need for dynamic analysis using 
real-time perifusion or microfl uidic tools.

Recent technological innovations off er promising 
avenues to overcome these barriers. Optogenetic 
and chemogenetic platforms now enable targeted 
stimulation or inhibition of individual cell types with 
temporal precision [43-46]. Coupled with high-
resolution perifusion systems and hormone-sensing 
biosensors, these tools allow dynamic interrogation 
of islet function under near-physiological conditions.

The case for perifusion and microfl uidic systems

Notably, perifusion systems off er resolution 
between 0.5–5 minutes per fraction, which is 
suffi  cient to detect the oscillatory hormone release 
patterns characteristic of healthy islets [47-49]. 
High-resolution perifusion of whole pancreas tissue 

or pancreas slices off ers clear advantages over 
isolated islet models. These approaches preserve 
islet architecture, maintain native vasculature, and 
enable hormone secretion profi ling that refl ects true 
in vivo dynamics [50-52]. Microfl uidic "islet-on-a-
chip" systems go further, integrating multiple sensor 
arrays for real-time monitoring of secretory and 
signaling events [53-59]. Despite their promise, these 
tools remain underexploited in the fi eld’s standard 
research workfl ow.

Reframing the research agenda

To advance our understanding of islet biology, we 
must embrace both the complexity and the dynamic 
nature of intra-islet communication. We must also 
acknowledge the inadequacies of current models and 
experimental designs. Critical steps forward include:

1. Temporal Fidelity: Adopt perifusion or 
microfl uidic systems for high-resolution, 
real-time analysis [47-49].

2. Cell-Specifi c Resolution: Leverage cell-
targeted optogenetics or chemogenetics to 
probe causal mechanisms with precise cellular 
specifi city [43,45] 

3. Physiological Relevance: Emphasize in situ or 
ex vivo preparations that preserve vascular and 
paracrine microenvironments [50,51].

4. Functional Readouts: Prioritize direct hormone 
measurements over indirect proxies like Ca²⁺ 
fl ux unless clearly linked to secretion [54,56].

5. Systems Integration: Incorporate vascular and 
neural inputs into islet models, shifting from 
reductionist to integrative physiology [11] 
(Table 1). 

Conclusion
Are we asking the right questions?

The current conceptual model of intra-islet 
signaling, while instructive, falls short in accounting 
for the dynamic, oscillatory, and systemic integration 
of islet output. By embracing dynamic, high-
resolution, and integrative approaches, we can move 
toward a truly mechanistic understanding of intra-
islet signaling. The tools are here, and the fi eld is 
well-positioned to dissect these complexities. The 
question remains: are we designing studies that truly 
refl ect the physiology we aim to understand?
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Table 1: Comparative evaluation of islet secretion assessment methods.

Feature Static Incubation Perifusion
Natural Ligand Stimulus-

Response Coupling
Optogenetic/Chemogenetic

Cell-Specifi c Stimulation

Description

Islets are placed in a 
stationary medium 

for a set time to 
assess hormone 

secretion.

Islets are continuously 
perfused with medium 
to measure dynamic 
secretion over time.

Uses physiological ligands 
(e.g., glucose, amino 

acids) to trigger hormone 
release via endogenous 

pathways.

Activates specifi c cell types using light 
or designer drugs to dissect intra-islet 

circuit control.

Pros
- Simple setup

- High-throughput
- Cost-effective

- Time-resolved data
- Better mimics in vivo
- Control over stimulus

- Preserves native 
pathways

- Physiologically relevant
- Easy to apply

- Cell-type specifi city
- Temporal precision

- Dissects causal relationships

Cons

- No time resolution
- Feedback 

accumulation
- Poor for dynamics

- Technical complexity
- Expensive

- Low throughput

- Stimulates all responsive 
cells

- Indirect effects
- Lacks specifi city

- Requires genetic tools
- Specialized equipment

- Depends on targeting effi  ciency

Temporal Resolution Poor High
Moderate to high (depends 

on setup)
High (ms to min scale)

Cell Specifi city None None Low High

Mechanistic Insight Limited Improved (temporal)
Moderate—pathway-level 

only
High—cell-type–resolved mechanisms

Physiological Relevance Moderate High High Variable (depends on targeting fi delity)

Throughput High Low to medium Medium to high Low to medium

Equipment Needs Minimal
Specialized perifusion 

system
Standard lab setup

Optogenetics: light delivery
Chemogenetics: viral tools, DREADDs

Cost Low High Low to moderate High

Our ability to meaningfully intervene in diabetes 
depends on shifting from descriptive to mechanistic 
insight—particularly into how intra-islet 
communication shapes hormone pulsatility. Early 
disruptions in this fi nely tuned system may off er 
diagnostic value before overt dysfunction emerges. 
Precision therapies will rely on targeting specifi c 
paracrine pathways, such as somatostatin and 
glucagon signaling, in ways that respect the native 
dynamics of the islet. As experimental models grow 
more sophisticated, so must our questions. Only then 
can we align our interventions with the complexity of 
the system we seek to restore.
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