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Introduction
We are taught that cancer is caused by accumulation of DNA mutations 

that activate oncogenes and inactivate suppressor genes. This mutation 
theory is, in several ways, quite unsatisfactory. First, mutation is a very 
rare event yet 13/100 men are diagnosed with prostate cancer in America 
each year, with higher incidence for Black men than White [1]. Second, 
for organs in the same anatomical area, cancer strikes the prostate the 
highest, the bladder lower, the seminal vesicles almost never. Third, why 
is the incidence higher in certain geographical regions than others? These 
imply that mutation, which should be non-selective, is anything but. One 
celebrated fi nding is the prostate cancer-specifi c TMPRSS2-ERG gene 
fusion [2]. However, this event shows a variable frequency in diff erent 
world populations. Its only utility is in early detection for men who have 
this genomic alteration. Overall, a majority of cases are sporadic than 
familial. A small number of unfortunate men inherited mutated genes that 
makes them predisposed to cancer. Much eff ort has been spent in scanning 
the genome for disease-associated nucleotide changes [3]. Methods have 
been developed to knock out or knock in cancer-relevant gene candidates 
in mouse models to show that they are responsible [4]. Accordingly, cancer 
and progression to lethality is irreversible and incurable. We present a 
diff erent take on how cancer develops and becomes lethal due rather to 
abnormal communication between cell types. Our study approach is to 
isolate by fl ow cytometry live cell populations from tumor and benign 
tissues of the prostate (and bladder for comparative analyses), determine 
their individual transcriptomes, and combine various cell populations in 
co-culture to observe interaction through secreted factors with or without 
cell contact. The experimental details can be found in our published 
articles in the reference list.

CD immunostaining of organ component cell types

In many aspects, prostate is an ideal human organ for research on 
intercellular signaling. The gland is a relatively simple organ composed 
of only three major cell types. Due to the high incidence of prostate cancer 
and open surgeries for its treatment one could have a reliable source of 
prostatic tissue, normal/benign and cancer, with informed patient consent 
for experimentation in cellular and molecular biology. Also available are 
metastases harvested from donor autopsies and their corresponding 
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xenograft lines (e.g., the UW LuCaP family). For 
multicellular organs like the prostate and bladder, 
cell-to-cell communication via hormone molecules 
and heterotypic cell contact maintains proper 
diff erentiation of the component cell types. During 
embryogenesis, mesenchymal cells in the urogenital 
sinus instruct stem/progenitor cells to diff erentiate 
into functional mature epithelial or urothelial cells 
as appropriate [5,6]. Diseases such as neoplasia, 
hyperplasia, hypoplasia or dysplasia may develop 
if this communication is missing. It means that the 
instruction for terminal diff erentiation is no longer 
on hand leading to immature and not fully functional 
cells. We used immunostaining of Cluster Designation 
(CD) antibodies against cell surface antigens to tag 
the various cell types [7,8]. In the adult prostate, 
the stromal compartment contains CD49a+ smooth 
muscle cells (designated NPstrom – normal prostate 
stromal cells for convenience) and the epithelial 
compartment contains CD26+ luminal and CD104+ 
basal cells (plus a small number of neuroendocrine 
and possible organ progenitor cells) [9,10]. Other 
identifi able cell types include infi ltrating CD45+ 
white blood cells, CD31+ endothelial cells of blood 
vessels, CD56+ nerve fi ber cells. In adult bladder, the 
prostate stromal equivalent are CD13+ cells localized 
in the proximal lamina propria (NBstrom – normal 
bladder stromal cells) next to the urothelium of CD9+ 
urothelial and CD104+ basal cells (and progenitor 
cells) [11].   

Principal components analysis plot of cell type-
specifi c transcriptomes 

As a means to study diff erentiation, we generated 
a 3D so-called Principal Components Analysis (PCA) 
plot from cell transcriptomes. Flow cytometry 
was used to purify the cell populations of CD49a+ 
stromal, CD26+ luminal, CD104+ basal, and CD31+ 
endothelial from the prostate [9,12], CD13+ stromal, 
CD9+ urothelial, and CD104+ basal from the bladder 
[11] for transcriptomics by DNA microarrays. For stem 
cells, we determined the transcriptomes of cultured 
Embryonic Stem (ES), Embryonal Carcinoma (EC), 
and induced Pluripotent (iPS) [13] cells. In this plot, 
the separation measured by a ∆ value between any 
two transcriptome datapoints representing cell types 
indicates their degree of relatedness, the smaller the 
∆ the more related [12]. The stem cell types occupy 
a near center locale whereas the diff erentiated cell 
types are located toward the periphery with large ∆ 
between them as well as between them individually 
and stem cells (Figure 1A). When the prostate and 

bladder PCA plots are displayed together, we can see 
the transcriptome (i.e., gene expression) diff erence 
between CD49a+ NPstrom and CD13+ NBstrom, 
between CD26+ prostate luminal and CD9+ bladder 
urothelial, and between their respective CD104+ basal 
(Figure 1B). The practical utility of this analysis tool 
will be demonstrated below. The main drawback is the 
requirement of a single platform to determine gene 
expression of all cell types. Previously, we showed 
that transcriptomes determined from laser-capture 
microdissected cell populations were not useful in 
generating such plots [14].    

Stromal cell induction of stem cells

To demonstrate the functional property of stromal 
cells, we employed a co-culture of isolated stromal 
cells and stem cells represented by the EC cell line 
NCCIT, which has a gene signature similar to that of 
ES cells diff ering in only a small number of genes. The 
co-culture involved either growing the two cell types 
separated by a semi-permeable membrane barrier 
or one type with conditioned media of the other [12]. 
Interaction was monitored by cell/colony appearance 
and gene expression changes over a period of 7d. 
NCCIT cells in media of NPstrom or NBstrom became 
stromal-like by gene expression, best illustrated by 
down-regulation of the four stem cell Transcription 
Factors LIN28A, NANOG, POU5F1, SOX2 (scTF) and 
concomitant up-regulation of β2-microglobulin; 
(B2M). The PCA plot provides a visualization of 
the transcriptome change from 0h to 7d with the 
treated NCCIT datapoints “migrating” toward that of 
cultured stromal cells (Figure 1C). Note separation of 
the datapoints of cultured and fl ow-sorted Stromal 
(S), which is due mainly to genes activated in cell 
proliferation [15]. B2M expression is 10-fold less in 
stem and stem-like cancer cells than diff erentiated 
cells based on its DNA microarray signal intensity 
levels, which were verifi ed by Reverse Transcriptase-
Polymerase Chain Reaction (RT-PCR) [16]. Robust 
colony growth typical of EC cells was greatly 
diminished with reduced cell density shown by gaps 
among colonies. Genes were induced diff erentially by 
NPstrom vs. NBstrom highlighting the ability of stem 
cells to respond to diff erent sources of signaling or 
diff erentiation instructions [12]. 

What are the organ-specifi c (i.e., prostate vs. 
bladder) diff usible stromal factors present in the 
media? To answer, we carried out a comparative 
transcriptomic analysis between NPstrom and 
NBstrom for expressed genes encoding secreted 
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Figure 1 PCA plot. 

These schematics are adapted from published data to show the following. 

A. The prostate PCA is generated from the transcriptomes of luminal (L), stromal (S), basal (B) and endothelial (E) cells plus those of ES, EC 
and iPS cells. 

B. Bladder cell-type transcriptomes are displayed in the prostate PCA space to show that bladder cell types – NBstrom, CBstrom, NBuro, CBuro, 
NBbasal – are distinct from the corresponding prostate ones. The 3D display is rotated for a different perspective of the datapoints than that 
in panel A. 

C. Transcriptomes of induced NCCIT cells at various time points are visualized with respect to those of cultured and sorted (S) stromal cells. 
The expression levels of scTF, B2M at the beginning of co-culture (0h) and at 7d are shown in histogram format of DNA microarray signal 
intensity values (y-axis). The induction of STC1 and PENK in NCCIT by NPstrom in the time course is shown in the bottom left. 

D. The gene expression difference between sorted NPstrom (S) and CPstrom, between sorted luminal (L) and cancers (G3, G4) are shown. The 
separation between L and G3 is smaller than that between S and CPstrom indicating more expression changes in CPstrom than G3 cancer 
from their normal counterpart. 

E. The conversion of NPstrom by diffusible NCCIT factors in culture to CPstrom-like can be seen by the placement of the datapoints (mRNA) – 
NPstrom+NCCIT, CPstrom+NCCIT, CPstrom. NCCIT showed minimal effect on the transcriptome of CPstrom (CPstrom+NCCIT). 

F. The changes in transcriptome between LuCaP 70CR and LuCaP 70CR*, between CPstrom and its iPS are compared. 
The respective ∆ values are equally large.
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proteins [17]. The bladder stromal cells are found in a 
10-20-cell thick layer immunostained by CD13 in the 
lamina propria [11]. Prostate stromal cells are negative 
for CD13, although a number of other CD antigens are 
shared by both stromal cell types. We termed the CD13+ 
layer superfi cial lamina propria, which is also found 
in the mouse bladder [17]. The top identifi ed genes 
for NPstrom were those that encode Proenkephalin 
(PENK), stanniocalcins STC1 and STC2. When these 
genes were queried from the transcriptome datasets 
of treated NCCIT cells, STC1 was detected early at 3h 
of co-culture, and its expression rose sharply over 
time, while PENK was detected later at 5d and, more 
important, not induced by NBstrom showing the 
specifi city of stromal infl uence [12]. STC1 and STC2 
were induced quantitatively diff erent with higher 
STC1/lower STC2 by NPstrom vs. lower STC1/higher 
STC2 by NBstrom refl ecting their expression patterns 
in CD49a+ NPstrom and CD13+ NBstrom [17]. 

Absent stromal PENK signaling in prostate 
cancer

PENK expression in the prostate was validated 
by immunohistochemistry using a polyclonal 
antibody raised against a selected peptide sequence. 
In addition to stromal staining, smooth muscle cells 
of large blood vessels and the bladder muscularis 
were positive [17]. Staining was absent in tumors, 
specifi cally the cancer-associated stroma. RT-PCR 
showed PENK expression minimal or undetectable in 
prostate tumors of diff erent Gleason scores (3+3, 3+4, 
4+5) as well as bone and liver metastases. Dataset 
query showed “present” only in the transcriptome 
of CD49a+ prostate stromal cells [17]. Cancer-
associated stromal cells (CPstrom) are strongly 
positive for CD90 [18]. About a 20-cell width of 
CPstrom separates cancer epithelial cells from PENK-
positive NPstrom of adjacent benign areas. Secreted 
PENK signaling is likely eff ective at a short distance, 
and could not aff ect cancer cells within tumor foci. 
Although lacking PENK, CD90-sorted CPstrom could 
still induce NCCIT to down-regulate the four scTF and 
up-regulate B2M indicating factors other than PENK 
could induce diff erentiation since Gleason pattern 3 
(G3) tumors still possess a glandular histology [19,20]. 
Candidates include the STC proteins (see below), 
which, like PENK, have been reported to be involved 
in early development [21,22]. STC1 is expressed by 
both stromal and epithelial cells in NP and CP, which 
was verifi ed by RT-PCR analysis and dataset query 

[17,20]. Its expression is decreased in cancer cells of 
advanced tumors and cancer cell lines [20]. As shown 
above, its induction in NCCIT predates that of PENK. 

Difference between NPstrom and CPstrom

We showed by transcriptomics of sorted CD90+ 
CPstrom and CD49a+ NPstrom that the diff erence in 
gene expression was even more than that between 
luminal and G3 cancer [23,24] (Figure 1D). What 
is the nature of CPstrom? The interaction between 
co-cultured stromal cells and NCCIT was found 
bidirectional. Secreted stem factors from EC cells 
could convert co-cultured NPstrom into CPstrom-
like based on transcriptomics [25] (Figure 1E). 
Cultured stromal fi broblastic cells initiated from 
diff erent donor tissue specimens displayed a 
consistent gene expression profi le with a correlation 
effi  ciency R = 0.99 [26]. Genes needed for cell 
division were activated in culture, but cell division 
was essential to produce changes in response to 
signaling. Co-culture of NCCIT and stromal cells 
lasted 3d. No gross morphology diff erences between 
NPstrom, CPstrom, or after co-culture with NCCIT 
were observed. However, co-cultured NPstrom were 
found to express qualitatively and quantitatively 
microRNA (miRNA) and mRNA similar to CPstrom. 
In contrast, no signifi cant changes were found in co-
cultured CPstrom. Examples of miRNA with increased 
expression include let-7f, miR-29b, miR-23a, miR-
21. In particular, miR-21 is associated with cellular 
dediff erentiation [27]. Examples of mRNA increases 
include CD90, MiRN21, HGF, SFRP1, BGN and 
decreases include IGFBP5, HSD11B1. MiRN21 is the 
poly-adenylated, capped transcript to be processed 
to miR-21. The increase in CD90 corresponds to 
its stronger immunostaining of CPstrom. HGF 
(hepatocyte growth factor) is a known signaling 
molecule in stromal-epithelial interaction with high 
expression in the undiff erentiated mesenchyme at 
embryogenesis and less in the adult [28]. Increased 
miR-21 and HGF is indicative that CPstrom represents 
a less diff erentiated state of NPstrom. Of note, tissue 
inhibitor of metallopeptidase TIMP3 was decreased 
and matrix metalloproteinase MMP1 was increased 
in CPstrom, which would aff ect integrity of the 
extracellular matrix allowing cancer cells to spread 
beyond the tumor foci [19]. These results suggest that 
unlike NPstrom, CPstrom is functionally defective 
in induction by not producing a key signaling factor 
PENK, which could then lead to abnormal epithelial 
cell diff erentiation, and perhaps cancer development 
[29].
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Prostate cancer cell types

Prostate cancer shows loss of diff erentiation from 
low to higher Gleason, from tumors with glandular 
histology to tumors without, from adenocarcinoma to 
non-adenocarcinoma and small cell carcinoma. Based 
on transcriptome and placement in the PCA plot, 
prostate cancer cells can be either like luminal cells 
(diff ering in the expression of a few hundred genes 
[24]) or less like luminal and more like stem cells 
[30]. The luminal-like cancer cells include G3 cancer, 
LNCaP, C4-2, LuCaP adenocarcinoma cell lines. The 
stem-like cancer cells include Gleason 4 (G4) cancer, 
CL1, PC3, DU145, LuCaP non-adenocarcinoma and 
small cell carcinoma cell lines. 

We showed a lineage relationship between these 
two groupings by using scTF vectors to transfect 
and reprogram fi ve adenocarcinoma LuCaP lines. 
These were adapted to grow with Mouse Embryonic 
Fibroblasts (MEF) [31]. No signifi cant expression 
changes were reported for the xenograft LuCaP 
147 cells cultured in vitro as spheroids [32]. 
Reprogramming is an experimental process whereby 
diff erentiated cells are converted to iPS cells. The 
reprogrammed LuCaP cells became small cell 
carcinoma-like and stem-like in three weeks. The ∆ 
between, for example, LuCaP 70CR (CR=Castration 
Resistant) and reprogrammed LuCaP 70CR* (* 
to indicate scTF-transfected) was similar to that 
between CPstrom and its iPS (Figure 1F). All fi ve 
reprogrammed LuCaP derivatives appeared dark 
compared to their untransfected or mock transfected 
parentals, and were relatively smaller in size. The 
colony morphology was unlike that of cultured ES 
cells, and the dependence on MEF remained. RT-PCR 
showed that adenocarcinoma line LuCaP 23.12 was 
POU5F1+B2Mhi while small cell carcinoma LuCaP 145.1 
was POU5F1+LIN28A+SOX2+NANOG+B2Mlo [31]. 
Thus, luminal-like cancer cells can be phenotyped 
as scTF−B2Mhi with respect to all four scTF vs. 
scTF+B2Mlo for stem-like cancer cells [16]. Loss of 
prostate cancer diff erentiation could be attributed to 
the activation of scTF as in cellular reprogramming.

PENK-induced differentiation of cancer cells

Could stromal factors such as PENK induce stem-
like prostate cancer cells to undergo diff erentiation as 
in NPstrom induction of germ cell tumor-derived EC 
cells? We cloned PENK to transfect scTF+B2Mlo LuCaP 
145.1. The cancer cells were adapted to grow in vitro 
with MEF after tissue digestion of a freshly resected 

xenograft [20]. Of note, LuCaP 145.1 cells have a lighter 
density (ρ = 1.035) than adenocarcinoma cells (ρ = 
1.07) on banding in a discontinuous density gradient  
[16], another indication of its non-epithelial-like 
characteristics. At 3d post-transfection (when MEF 
were killed by the drug selection for transfected cells) 
with autocrine PENK production, down-regulation 
of scTF and up-regulation of B2M in transfected 
LuCaP 145.1 was found. The change from scTF+B2Mlo 
to scTFlo/−B2Mhi was indicative of the cancer cells 
undergoing diff erentiation. The simultaneous 
changes in scTF and B2M were consistent with the 
results obtained in stromal induction of NCCIT. The 
decrease in POU5F1 was not as pronounced since 
non-stem-like LuCaP lines (LuCaP 23.12 and others) 
express this factor [31]. Control vector transfection 
produced no such result.

Next, is PENK capable of undoing cancer cell re-
programming? We reprogrammed scTF−B2Mhi ad-
enocarcinoma LNCaP by scTF vectors to scTF+B2Mlo 
LNCaP*. The obtained LNCaP* cells were cloned, and 
one clone (#2) was transfected by PENK. The result-
ant cells regained scTF−B2Mhi [20]. Individual LNCaP 
cells appeared with a “bright halo”, irregular in cell 
shape with a tendency to cluster (under the culture 
condition used). LNCaP* cells appeared darker, more 
regular in shape. This appearance was similar to that 
of all the reprogrammed LuCaP* [31]. Individual cells 
grew in a loose formation not in contact with each 
other. LNCaP*/PENK appeared to regain the “bright 
halo” but the cell shape was distinct from that of 
LNCaP but similar to that of LNCaP transfected by 
PENK. Both grew in clusters (Figure 2, top panels). 
Transcriptomics showed multiple gene expression 
changes upon PENK transfection. One could say that 
luminal cells are held together by molecular tight 
junctions to restrict backfl ow of lumenal secretion, 
while cancer cells, especially of small cell carcinoma, 
being non-epithelial, do not form such tight junc-
tions. The reprogramming reversal is accompanied 
by changes in cell appearance and colony morphol-
ogy. In this sequence, cell appearance changed from 
LNCaP to stem-like LNCaP*, then to LNCaP*/PENK. 
STC1 could also produce the same eff ect as shown by 
LNCaP*/STC1 vs. LNCaP/STC1 (Figure 2, bottom pan-
els). The oligonucleotides used for cloning the 760 bp 
STC1 cDNA were 5’ primer cagggcccgatatcGAAACT-
TCTCAGAGAATGCTCCAAAACTCAG and 3’ primer 
gctgaggatccTTATGCACTCTCATGGGATGTGCGTTTG. 
These experiments demonstrated that cancer cells, 
LuCaP 145.1 and LNCaP, could respond to activation 
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Figure 2 Cancer cell reprogramming and differentiation. 

A. Top panels:  LNCaP cells were reprogrammed by forced expression of scTF, and then induced to differentiate by forced expression of PENK. 
The colony morphology of the different lineage-related LNCaP cell types are visibly unique with those of LNCaP*/PENK and LNCaP/PENK 
(clone A1) appearing similar. 

B. Bottom panels: STC1 could also produce morphology change in LNCaP* transfected by STC1 to appear similar to LNCaP transfected by 
STC1.

of scTF and to diff erentiation induction of PENK and 
STC1 despite containing multiple mutations in their 
genome and being aneuploid. It would then be expect-
ed not to pose a problem in the future application of 
PENK diff erentiation therapy to treat stem-like solid 
tumors. The reversal of reprogramming by PENK can 
explain our previous reported failure to reprogram 

PENK-positive NPstrom vs. PENK-negative CPstrom 
[13]. In principle, loss of cancer diff erentiation could 
be reversed or even prevented. With further research, 
it is possible that PENK plus others such as STC1 could 
induce cancer cells to a normal or pseudo-normal 
state (as shown by NPstrom induction of NCCIT). One 
prediction is that supplying key stromal factors miss-
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ing in tumors (e.g., STC1 fi rst followed by PENK as 
detected in NPstrom induction of NCCIT) could make 
cancer cells diff erentiate terminally to luminal-like 
cells. Diff erentiation therapy has been shown eff ec-
tive in treating certain leukemia where maturation of 
functional cells was promoted by identifi ed chemical 
compounds [33]. As a side note, the down-regulation 
of B2M in stem-like cancer cells could undermine full 
expression of HLA-1 antigens (B2M being a subunit of 
the complex), which mediate cytotoxic T cell recogni-
tion of tumor cells. It is likely a mechanism behind the 
failure of immune checkpoint inhibition treatment of 
small cell lung cancer [34] if they are also scTF+B2Mlo.

Effect of cancer-associated antigen AGR2 on 
stromal cells 

One might ask what happened to NP stromal cells 
where tumor emerged. Anterior Gradient 2 (AGR2) is 
known as an adenocarcinoma antigen due to its high 
expression in many solid tumors [35]. Cancer cells 
produce the extracellular form, eAGR2, where it is lo-
calized on the cell surface and secreted [35,36]. The 
intracellular form, iAGR2, is expressed by normal 
cells. In prostate cancer, AGR2-positive tumors are 
associated with better survival, even for high-stage 
diseases [37]. AGR2 expression is 10-fold higher in G3 
cancer cells than that of G4 [24,38,39], suggesting its 
association with cancer diff erentiation. In local me-
tastases, AGR2 is low or negative; another molecule, 
CD10, is a candidate responsible for extracapsular es-
cape [40]. However, distant metastases contain cancer 
cells with high AGR2 (and low CD10) expression [37]. 
We showed that cancer-secreted AGR2 could induce 
Programmed Cell Death (PCD) of stromal cells char-
acterized by cellular blebs, shrinkage, DNA fragmen-
tation without RNA degradation as seen when stromal 
cells were UV-irradiated or treated by a pro-apoptotic 
drug staurosporine [41]. Necrotic stromal cells after 
electroporation showed both DNA and RNA degrada-
tion.  In these experiments, low-passage stromal cells 
were cultured in the presence of AGR2. The source of 
AGR2 were tissue digestion media of adenocarcinoma 
LuCaP tumors (e.g., that of LuCaP 70CR containing 
>100 pg/ml AGR2), AGR2-positive tumor specimen 
(10-076CP), AGR2-positive bone metastasis. The 
control included digestion media of LuCaP 145.1 (con-
taining <2 pg/ml AGR2), the corresponding AGR2-
negative benign specimen (10-076NP). After 24h, no 
viable stromal cells were seen in AGR2-containing 
media whereas in control they remained healthy. Ad-
dition of the AGR2 antibody, P3A5 [42], to the media 
prevented PCD. Transcriptomics found down-regu-

lation of spermidine/spermine N1-acetyltransferase 
(SAT1) among the <30 (out of 54,000 represented 
by probesets) diff erentially expressed genes. SAT1 
maintains intracellular polyamine levels; abnormal 
levels of which have an adverse eff ect through the in-
duction of PCD [43]. SAT1 down-regulation was found 
in UV-irradiated stromal cells as well. Also identifi ed 
was down-regulation of prothymosin-like α, which 
has an anti-apoptotic function. Circulating AGR2 in 
cancer patients could theoretically eliminate suscep-
tible cells to allow metastatic cancer cells to invade 
and colonize other organs such as bone marrow, liver 
and lung [36]. Cells resistant to the eff ect of eAGR2 
would not allow metastatic cancer cells to take root 
and expand, perhaps explaining preferential sites 
for prostate cancer metastasis. Inhibition of AGR2 by 
neutralizing antibodies could prevent tumor spread 
by targeting circulating surface eAGR2+ cancer cells 
and negating the deleterious eff ect of secreted AGR2 
[44]. eAGR2 is a unique tumor-associated antigen in 
that normal cells only express iAGR2. 

Summary
Defects in stromal cell signaling could contribute 

to cancer development. The term “reactive stroma” 
is used to describe changes found in the stromal com-
partment [45]. It implies that stromal cells react to 
the presence of cancer cells. These altered cells in turn 
promote cancer progression. Rather, it is the less dif-
ferentiated state of CPstrom that cannot induce full 
diff erentiation of epithelial cells. Prostate cancer cells 
once exited the glandular capsule are no longer in 
contact with CPstrom, and yet they can still progress 
to lethality. Conversion from adenocarcinoma to 
small cell carcinoma occurs after androgen depriva-
tion therapy as evidenced by both types containing 
TMPRSS2-ERG in the same patients for those positive 
for this biomarker [46]. Caner epithelial cells expres-
sion of eAGR2 further depletes functional stromal 
cells through PCD. Cancer expression of CD10 allows 
capsular escape. Increased expression of AGR2 again 
in the escaped cells allows spread to distant organs. 
Outside the prostate in metastases, cancer cells seem 
to become independent of stromal cells as evidenced 
by the adenocarcinoma histology and PSA secretion. 
PSA expression in the prostate by luminal cells is con-
trolled through contact with stromal cells [47]. Can-
cer progression to lethality in later stages of the dis-
ease may arise in response to outside factors such as 
deprivation of androgen [46]. Figure 3 shows the dif-
ferent prostate cancer cell types in the disease course. 
Treatments need to be tailored to the diff erent types. 
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Anti-AGR2 immunotherapy could be eff ective against 
the eAGR2-positive (iAGR2-positive normal cells are 
immune) [48], while diff erentiation agents could be 
eff ective against the scTF-positive. PENK, STC1, and 
AGR2 are all involved in cell-cell interaction capable 
of producing phenotypic changes in responding cells. 
Our study shows that cancer progression (to a more 
stem-like state) can be reversed or prevented by stro-
mal factors (as shown by NPstrom being resistant to 
reprogramming). Nuclear transcription factors, gen-
erally thought undruggable, can in fact be targeted by 
hormone molecules like PENK and STC1. 

Limitations of all research employing human cells 
include ready availability of enough quantity (0.1 - 0.5 
g) of tissue specimens for downstream processing. At 
present, availability is diminishing due to new tech-
niques like pinpoint radiation and laparoscopy where 
targeted tissues are extensively damaged. Because of 
screening, higher-grade cancer are less frequently 
diagnosed. Optimally, one would like a transcriptome 
dataset of 10-20 sorted G3, G4 and Gleason 5 tumor 
cells. Fortunately, many more xenografts representa-
tive of the disease are being established [49]. There 
remains the somewhat tedious process of adapting 
them to in vitro growth where care is exercised to en-
sure mouse fi broblasts in the harvested tumors are 
completely removed otherwise these cells will over-
grow. Stromal cells, NPstrom or CPstrom, once iso-
lated (e.g., from excess biopsies) can be cultured for 
multiple passages, and stored frozen. Currently, lack 
of monoclonal antibodies to PENK, STC1 is hindering 
in their purifi cation for adding directly to tumor cells 
in vitro and in mice. 

Our research approach is applicable to other major 
organs. Tissue regeneration and renewal, as shown 
by NPstrom and NBstrom induction of NCCIT, require 
organ-specifi c instructive stromal factors, which are 
yet unidentifi ed for many. We presented a CD signa-
ture of kidney component cell types (~30) [14], which 
can be utilized to isolate and study renal cell diff eren-
tiation. Although tissue progenitor cells are postulat-
ed to be present, e.g., side population of the prostate 
[10], their scarcity presents a challenge in isolation. 
Nevertheless, patient-derived iPS cells can be used 
instead. Reprogramming is readily achieved with our 
constructed scTF plasmid vectors [16].    
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