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Abstract
Background: Immune therapy has revolutionized the treatment of certain 

cancers including melanoma and lung cancer.  Breast cancer has fewer tumors with 
high immune infi ltrate and Immune Checkpoint Inhibitor (ICI) therapy has shown the 
most signifi cant responses in the Triple Negative (TN) subtype although roles are 
emerging in the other subtypes.  The presence of Tumor Infi ltrating Lymphocytes 
(TIL) is predictive of response to ICI therapy in metastatic TN and associated with 
better survival in local TN disease. Hormone Receptor (HR) positive HER2 negative 
(HR+HER2-) breast tumors do not show improved prognosis with increasing TIL 
and only a small portion of HR+HER2- tumors respond to ICI in both metastatic 
and local disease.  We therefore sought to identify genetic differences between TN 
and HR+HER2- tumors to identify how these may contribute to their differences in 
immune infi ltrate.  

Methods: We contrasted immune-associated gene expression between 119 
TN and 475 HR+HER2- breast tumors from The Cancer Genome Atlas (TCGA) 
and confi rmed our fi ndings from 299 TN and 1369 HR+HER2- breast tumors in 
METABRIC. 

Results: We found that TN and HR+HER2- tumors can be grouped into immune-
high  or -low tumors, with both subtypes represented in the immune-high group 
(40% HR+HER2- tumors of both Luminal A and Luminal B type and 71% TN tumors) 
in the TCGA. The genes upregulated in the immune-high cluster included GZMB, 
CXCL9, and IDO1 (Log2FC > 2; Adj. p < 10X10-40). The largest expression difference 
between the immune-high TN and HR+HER2- tumors was that TN tumors had more 
abundant Th1  and Th2 CD4+ T cells while HR+HER2- tumors had more abundant 
fi broblasts (Log2FC > 0.3; Adj p < 10X10-10). 

Conclusions: Our data suggest that an immune-high signature is not dictated 
by breast cancer subtype. However, fi broblasts, particularly fi broblast subsets 
associated with worse outcome, are more abundant in the immune-high HR+HER2- 
tumors.
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Abbreviations
TIL: Tumor Infi ltrating Lymphocytes; HR+, HER2-

: Hormone Receptor; HER2+: HER2 Positive; TN: 
Triple Negative; ICI: Immune Checkpoint Inhibitor; 
FC: Fold Change; GSVA: Gene Set Variation Analysis; 
CAF: Cancer Associated Fibroblast

Introduction
The histological subtyping of breast cancer, based 

on Hormone Receptors (HR) (estrogen receptor, ER, 
progesterone receptor, PR) and human epidermal 
growth factor receptor ERBB2 (HER2) is essential 
to clinical management, determining prognosis, 
and treatment of breast cancer [1-4]. The histologic 
subtypes have diff erences in the type and amount of 
immune infi ltrate but a spectrum of immune infi ltrate 
exist in all breast cancer subtypes [5]. The benefi t of 
Immune Checkpoint Inhibitors (ICI) have been seen 
in metastatic cancers including renal cell, melanoma, 
and non-small-cell lung cancer [5-7]. The predictive 
biomarkers associated with response to ICI include 
PD-L1 expression, IFNγ expression, and increased 
somatic tumor mutations [6,7].  Also, a determinant 
for response to ICI therapy is the presence of an 
adaptive immune response within a tumor prior to 
treatment [8-11]. Breast cancer does not have the same 
level of adaptive immune infi ltrate seen in melanoma 
and non-small cell lung cancer although the level 
of immune infi ltrate in breast cancer is associated 
with clinical prognosis [12].  Breast tumors with 
greater than 50% Tumor Infi ltrating Lymphocytes 
(TIL) show improved pathologic complete response 
to neoadjuvant chemotherapy (p ≤ 0.01)(11) and 
increased intratumoral CD8+ T cells predict improved 
Overall Survival (OS) (p ≤ 0.01) [13]. In the adjuvant 
setting, each 10% increase of TIL predicted a 15% 
improved Disease Free Survival (DFS) (p = 0.025) and 
17% improved OS (p = 0.023) in Triple Negative (TN) 
but not hormone receptor positive HER2 negative 
(HR+HER2-) breast cancer [14,15].

In clinical studies, response to ICIs have best been 
seen in metastatic TN breast cancer which had a 19% 
response rate to pembrolizumab as a monotherapy 
[16]. In contrast, metastatic HR+HER2 breast 
cancer either with pembrolizumab as a single agent 
(KEYNOTE-028) or in combination with a CDK4/6 
inhibitor had an overall response rate of ~12% 
[17,18].  In neoadjuvant therapy, pembrolizumab has 
improved pathologic Complete Response (pCR) in both 

HR+HER2- and TN.  However, while the addition of 
pembrolizumab improved pCR in HR+HER2- tumors 
from 15.6% to 24.3%, the addition of pembrolizumab 
improves pCR in TN from 51.2% to 64.8% [19,20]. 
The same magnitude of benefi t of ICI therapy seen in 
TN breast cancer was not seen in HR+HER2- breast 
cancer, leading to the classifi cation of HR+HER2- 
breast cancer as “cold” tumors that do not respond to 
immune therapy.  

Targeted sequencing technology has proved 
useful for elucidating the complex relationships 
between cancer and the immune system through RNA 
expression. We used the HTG Oncology and Immune-
associated gene sets because they had previously been 
used to detect gene expression patterns that predicted 
responses in oncology clinical trials. For example, 
HTG Oncology’s immune-associated gene set was 
used to both demonstrate ICI therapy responders and 
predict resistance to ICIs in clinical trials across a wide 
variety of cancers including urothelial, colon, and 
lung [21,22] and has been used to identify neoadjuvant 
ICI response in TN breast cancer in the GeparNeuvo 
trial [23].  The HTG oncology panel has also been used 
in breast cancer clinical trials to determine changes 
in expression that predict treatment eff ect with the 
CDK4/6 therapy palbociclib in HR+HER2- breast 
cancer  in PALOMA2 and PALOMA3 [24]. 

We questioned whether we could identify distinct 
immune gene expression patterns in HR+HER2- 
and TN breast cancers that could account for the 
diff erences in immune infi ltrate between these 
subtypes. Analyzing gene expression data from 594 
breast cancer samples using the HTG Oncology and 
Immuno-oncology panels, 119 TN and 475 HR+HER2- 
from The Cancer Genome Atlas (TCGA), we found two 
distinct subgroups of immune-high and immune-
low tumors in both subtypes.  This was confi rmed in 
1668 HER2- tumors in the METABRIC dataset, 299 TN 
and 1369 HR+HER2- breast tumors. After estimating 
relative cellular phenotype abundances from bulk 
RNA sequencing, we found cancer-associated 
fi broblasts more abundant in HR+HER2- tumors, 
particularly higher in immune-high HR+HER2- 
tumors than immune-high TN tumors, while helper 
T cell populations were more abundant in immune-
high TN tumors.  These diff erences between immune 
high TN and HR+HER2- tumors may contribute to 
the diff erences in response to ICI but further work 
is needed to determine if CAF may provide targets to 
improve HR+HER2- response to ICI. 
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Materials and Methods
Collection of datasets from The Cancer Genome 
Atlas (TCGA) 

Normalized, bulk RNA sequencing expression data 
and clinical annotations were downloaded from the 
UCSC Xena TCGA portal for 119 TN and 475 HR+HER2- 
(412 ER+PR+, 63 ER+PR-, 0 ER-PR+) breast cancer 
patients.  Therefore the TCGA analysis set included 
20% TN and 80% HR+HER2- tumors. HR+HER2- 
and TN subtypes were defi ned using the clinical 
guidelines from the American Society of Clinical 
Oncology and are publicly available from previous 
studies of breast tumors in TCGA [25]. Mutation data 
(MAF) fi les were downloaded from the GDC Data 
Portal and mutational burden was analyzed using 
maftools [26]. The METABRIC gene expression and 
annotation was downloaded from the cBioPortal for 
Cancer Genomics and included 1369 HR+HER2- and 
299 TN tumors. Annotations for immune subtypes 
(C1-C6) were collected from Thorsson V, et al. [27].  
Annotations for the fi broblast subtypes were collected 
from Bartoschek M, et al. [28]. 

Oncology- and immune-associated gene sets

RNA expression was reported for 20,530 genes. 
We divided genes into two categories: oncology- and 
immune-associated (Supplementary Table 1(A,B)). 
2,500 were captured in the HTG Edge Seq Oncology 
Biomarker and 543 genes were captured in the HTG 
Immune assays (HTG Molecular Diagnostics, Inc., 
Tucson, AZ).  

K-means clustering and silhouette analysis

To determine the optimal number of clusters for 
k-means, silhouette analysis (from the R ‘cluster’ 
and ‘factoextra’ packages) was performed on the 
onco- and immune-associated genes independently. 
K-means clustering was performed (k = 2; Hartigan 
and Wong algorithm, ‘kmeans’ from the R ‘stats’ 
package) on RNA expression values for onco- and 
immune-associated genes groups separately. Using 
Silhouette analysis identifi ed k = 2 as optimal number 
of clusters using the HTG immune genes and oncogene 
sets (Supplementary fi gure 1(A-D)). Hierarchical 
clustering of the most variable genes in the immune-
associated gene set reveals two immune-associated 
gene expression patterns.  

Gene Set Variation Analysis (GSVA) and cell 
type frequency estimation

GSVA scores were calculated to measure gene set 
variation relative to the variation observed for all 
genes. To calculate sample-wise enrichment of a gene 
set, we used ‘GSVA’ in R [29].  Cell type enrichment 
was estimated with the ‘xCell’ package in R [30]. We 
restricted our analysis to immune relevant cell types 
(Table 1). To confi rm xCell enrichment scores, we 
calculated GSVA scores for independent gene sets for 
CD8+ T cells (CD8A, CD8B, CD3D) or Treg (IL2RA, 
CCR4, CTLA4, CD28, ICOS, FOXP3, CD5). 

Differential gene expression and cell enrichment

To identify diff erentially expressed genes or 
diff erentially abundant cell types between two 
groups we performed similar tests.  We used limma 

Table 1: RNA sequencing cell types abundance estimation.
Class Cell type

Dendritic

aDC

cDC

DC

iDC

pDC

B cells

B cells

Class-switched memory B cells

Plasma cells

proB cells

Neutophils

NK cells
NK

NKT

CD4+ T cells

CD4+ T cells

CD4+ naïve T cells

CD4+ memory T cells

CD4+ effector memory T cells

CD4+ central memory T cells

CD8+ T cells

CD8+ T cells

CD8+ naïve T cells

CD8+ effector memory T cells

CD8+ central memory T cells

Th1 cells

Th2 cells

Treg cells 

Tgd cells

M1 macrophages

M2 macrophages

Monocytes

https://www.jelsciences.com/articles/jbres2008s.zip
https://www.jelsciences.com/articles/jbres2008s.zip


1203Schmitz F, et al. (2024) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres2008

Figure 1 Transcriptomic clustering of immune- and onco-associated genes in HR+HER2- and TN breast tumors. Heatmaps show log2 gene 
expression for 594 tumors (y-axis). The x-axis contains the most variably expressed 25 and 28 genes in immune- and oncology-associated 
gene subgroups, respectively (A,C). Heatmap annotation tracks include K-means (k = 2) cluster assignments, generated from either all immune-
associated or onco-associated genes. Volcano plots show relationships between log2 fold change (FC; x-axis) and Benjamini-Hochberg adjusted 
p-values (y-axis) for differentially expressed genes in HR+HER2- and TN subtypes using immune-associated (B) or oncology associated (D) 
genes. Differentially expressed genes more highly expressed in HR+HER2- tumors are red and pink, while genes more highly expressed in 
TN tumors are blue and light blue.  In 1B, the cutoffs are (Adj. p-value < 0.05; abs(Log2FC) > 2) for red and blue, and (Adj. p-value < 0.05; 1 < 
abs(Log2FC) < 2) for pink and light blue.  In 1D, the cutoffs are (Adj. p-value < 0.05; abs(Log2FC) > 4) for red and blue, and (Adj. p-value < 0.05; 
1 < abs(Log2FC) < 4) for pink and light blue.

in R [31] to calculate the log2fold change (log2FC) 
which describes the diff erences in gene expression or 
cell-type frequency between the designated groups. 
P-values were corrected for multiple hypothesis 
testing using the “BH” (Benjamini Hochberg, 
controlling the false discovery rate) method.

Results
Immune-associated gene expression is not 
driven by clinical subtype

To investigate RNA expression profi les of 
breast cancer samples, we analyzed 119 TN and 475 

HR+HER2- breast cancer samples and limited our 
analysis to the genes included in HTG Oncology’s 
immune and oncology gene sets. For the immune-
associated genes, we began by performing k-means 
clustering to determine the optimal number of groups 
to immunologically characterize breast tumors (k = 2; 
see Material and Methods and Supplementary fi gure 
1(A,B)). Cluster 1 had higher median log2 expression 
of 543 immune genes than Cluster 2 (0.29 vs. -0.32), 
and thus Cluster 1 was referred to as ‘immune-high’ 
and Cluster 2 as ‘immune-low’ (Figure 1A). Cluster 1 
contains 276 breast tumors, 84 TN tumors and 192 

https://www.jelsciences.com/articles/jbres2008s.zip
https://www.jelsciences.com/articles/jbres2008s.zip
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HR+HER2- tumors (30% of the immune-high tumors 
are TN and 70% of the immune-high tumors are 
HR+HER2-).  By PAM-50 typing, both cluster 1 and 
cluster 2 HR+HER2- tumors included luminal A and 
luminal B tumors and not a predominance of luminal 
B in cluster 1 (Figure 1A). Cluster 2 contains 318 breast 
tumors, 35 TN and 283 HR+HER2.  When we evaluated 
which immune-associated genes were diff erentially 
expressed between HR+HER2- and TN breast tumors 
within the immune-high cluster, GATA3 (logFC = 3.8; 
adj. p = 4x10-101) was most expressed in HR+HER2- 
tumors (Figure 1B).  GATA3 has previously been 
associated with hormone receptor expression and 
lower tumor grade [32]. 

We evaluated the same TN and HR+HER2- tumors 
using the HTG oncology-associated genes to show 
these tumors genetically matched the breast cancer 
subtypes found by immunohistochemistry.  We 
performed k-means clustering of 2,500 oncology-
associated genes and found that, as expected, there 
were two major clusters: Cluster 1 is 97% HR+HER2- 
tumors (461 tumors) and Cluster 2 is 88% TN tumors 
(107 tumors) (Figure 1C).  The oncology-associated 
genes overexpressed more in HR+HER2- are hormone 
related including ESR1, ERBB4, and PGR which were 
more expressed in cluster 1 (log FC > 5, p < 0.001 for 
each) (Figure 1D).

We also performed Principal Component Analysis 
(PCA) on the oncology and immune-associated 
gene sets individually. For the oncology-associated 
genes, the principal component capturing the 
greatest variance (PC1: 16.4%) between tumor gene 
expression strongly separates TN and HR+ tumors 
(Supplementary fi gure 2A). This is illustrated 
by a high area under the curve (AUC) of 0.96 
(Supplementary fi gure 2B). However, in a PCA with 
immune-associated genes, we fi nd the fi rst principal 
component (PC1: 32%) is less associated with breast 
cancer subtype than the second principal component 
(PC2: 8%; AUCs = 0.74 vs. 0.91; Supplementary fi gure 
2(C,D)). Thus, the histologic subtype is not the primary 
driver of immune-associated gene expression. When 
evaluating all genes available in TCGA (n = 20,530) the 
gene expression diff erences between immune-high 
and low breast tumors included immune response 
genes including T cell signaling (e.g., IL2RG) and 
function (e.g., GZMB) (Figure 2A).

To provide independent validation of the immune-
high and immune-low clusters, we evaluated k-means 
clusters in the METABRIC dataset. The METABRIC 

dataset includes 1658 HER2- breast tumors: 299 TN 
and 1369 HR+HER2-.  This dataset similarly showed 
two immune clusters (see Materials and Methods); an 
immune-high cluster 1 (240 TN and 384 HR+HER2- 
tumors) and an immune-low cluster 2 (59 TN and 
985 HR+HER2- tumors). In this data set, 80% of TN 
tumors and 28% of HR+HER2- tumors were in the 
immune-high cluster (Supplementary fi gure 3A). 
Like the TCGA data set, when evaluating expression 
of the oncology-associated gene set, breast tumors 
generally clustered with their HR+HER2- or TN 
subtype similar to results by immunohistochemistry. 
There were 97% HR+HER2- and 12% TN in cluster 
1 and 87% TN and 3% HR+HER2- in cluster 2 
(Supplementary fi gure 3B).

Using immune clusters previously defi ned in 
33 cancer types in TCGA [27], we evaluated if these 
clusters distributed both within the oncology and 
immune-k-means clusters (Figure 2B). We fi nd 
the immune-high samples are enriched in C2 as 
compared to immune-low samples (55% vs 19%; 
fi gure 2Bi). Immune-high contains 21% of C1 (wound 
healing) where immune-low contains 44% of C1. The 
immune subset C5 was absent in the TCGA dataset, as 
seen in previous studies.  When comparing oncology-
gene based clustering, TN tumors are enriched for 
IFNγ dominant (C2) tumors compared to HR+HER2- 
(Figure 2Bii). This is illustrated by the diff erence in 
the proportion of C2 tumors between HR+HER2- (C2 
= 31%) and TN (C2 = 55%) oncology k-means clusters. 
This is concordant with previous reports describing 
a stronger T cell presence in TN versus HR+HER2- 
[12]. However, we fi nd the cluster associated with the 
best overall survival (C3) is almost exclusively found 
in HR+HER2- tumors, with 21% of the HR+HER2- 
tumors having a C3 immune environment compared 
to 2.5% of the TN tumors.  Forty-six percent  of the 
C3 tumors are immune-high and, as only six of the 
C3 tumors were TN, the majority of immune-high C3 
tumors are HR+HER2- (n = 43, 91% of all immune-
high C3 tumors) [27].

Inferred cell abundance diff erences between TN 
and HR+HER2- tumors within the immune-high 
cluster and the immune-low cluster.

To better understand the underlying diff erences 
between TN and HR+HER2- immune-high and -low 
clusters, we used gene signatures for CD8+ (Figure 
3Ai) and CD4+ Treg (Figure 3Aii) T cells as proxy 
for immune cell type abundance in the tumor. As 
expected, GSVA scores for CD8+ T and CD4+ Treg 

https://www.jelsciences.com/articles/jbres2008s.zip
https://www.jelsciences.com/articles/jbres2008s.zip
https://www.jelsciences.com/articles/jbres2008s.zip
https://www.jelsciences.com/articles/jbres2008s.zip
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Figure 2 Immune gene and functional differences between immune-high and immune-low breast cancers. The volcano plot shows the log2FC 
(x-axis) and Benjamini-Hochberg adjusted P- values (y-axis) for a test of differential gene expression on 20,530 genes in immune-high and 
immune-low clusters (A). Differentially expressed genes more highly expressed in immune-high (cluster 1) tumors are red (Adj. p-value < 0.05; 
Log2FC>2 or 4.5) and pink (Adj. p-value < 0.05; Log2FC 1) and immune-low (cluster 2) are blue(Adj. p-value < 0.05; Log2 fold change (FC<-2 or 
4.5) and light blue (Adj. p-value < 0.05; Log2FC < -1). Bar plots show the relative frequency of immune-subtypes from Thorsson V, et al. [27]. 
C1-6 are described as follows: wound healing, interferon gamma dominant, infl ammatory, lymphocyte depleted, immunologically quiet (not 
present here) and TGF-β dominant (B). Bi shows the difference between immune high and immune low groups and Bii shows the difference 
between HR+HER2- and TN groups.

Figure 3 Immune cell differences in immune-high and -low groups. Jitterplots show distributions of CD8+ (Ai) and Treg signature (Aii) GSVA 
scores (y-axis).  Volcano plot shows the statistical results of a test for differentially abundant cell types in immune-high and -low clusters (B). 
Cell types more highly abundant in immune-high (cluster 1) tumors are red (Adj. p-value < 10E-40; Log2FC > 0.1). (C) Volcano plot for differential 
expression of immune-high HR+HER2- (red) and TN (blue) (D) Expression of immune regulatory proteins for immune-high (red) and immune-
low (blue) tumors that are HR+HER2- or TN (y-axis).
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cell signatures in the immune-high cluster were 
twice that of the immune-low cluster. To estimate 
immune cell enrichment with cell type signatures, we 
used xCell(30) and confi rmed that xCell scores were 
behaving appropriately in this dataset including T 
cells, B cells, dendritic cells, and macrophages that 
were signifi cantly higher in the immune-high cluster 
(raw p < 10-50; fi gure 3B). 

Next, we sought to characterize the immune 
diff erences between TN and HR+HER2- within the 
patients of the immune-high cluster. Contrasting 
HR+HER2- and TN in the immune-high cluster, we 
found TH1 and TH2 CD4+ T cells are more abundant 
in TN than HR+HER2- and fi broblasts are more 
abundant in HR+HER2- tumors than TN tumors 
(log2FC > 0.3; p < 10-10; fi gure 3C).  There was no 
association between Th1 and Th2 infi ltrate in either 
immune-high (ρ = 0.15; p = 0.1859) or immune-low 
(ρ = 0.07; p = 0.6735) TN breast cancer.  However, in 
HR+HER2- tumors there was a positive association 
with increased TH1 tumors also having increased 
TH2 infi ltrate in both immune-high (ρ = 0.29; p 
<= 0.0001) and immune-low (ρ = 0.21; p = 0.0005) 
(Supplementary fi gure 4).  In a similar analysis of 
the immune-low cluster, we observe more Th1 and 
Th2 CD4+ T cells in TN than in HR+HER2- tumors 
and more fi broblasts in HR+HER2- tumors than TN 
tumors (Supplementary fi gure 5).  This suggests the 
immune infi ltrate may be impacted by the diff erences 
in fi broblasts between HR+HER2- and TN subtype 

regardless of the tumors being in the immune-high 
or immune-low groups (Supplementary tables (2,3)).

Immune checkpoint genes are diff erentially 
expressed between TN and HR+HER2- in the 
immune-high cluster but not in the immune-low 
cluster.

Immune checkpoint genes LAG3, ICOS, CTLA4, 
PD1 (PDCD1), PDL1 (CD274), PDL2 (PDCD1LG2), 
and OX40 (TNFRSF4), have been shown to predict 
responsiveness of tumors to ICI therapy [33,34]. 
Testing for diff erential expression levels of these 
genes, we observed statistically signifi cant higher 
expression in the immune-high group than the 
immune-low group as expected (Figure 3D, Welch’s 
2 sided T-test; adj. p < 9X10-36).  In the immune low 
group the immune checkpoint target genes LAG3, 
ICOS, PD-1, and PD-L1 were not statistically diff erent 
between TN and HR+HER2- tumors (adjusted p > 
0.05) but CTLA4 and OX40 were higher in TNBC 
than HR+HER2- (adjusted P-value p = 0.016 each).  
Irrespective of hormone receptor status, immune 
checkpoint expression was signifi cantly higher in the 
immune high cluster than in the immune low cluster 
(adjusted P-value p < 0.001) and in the immune high 
group there were no signifi cant diff erences between 
HR+HER2- and TN tumors.

ICI effi  cacy is also associated with CD8+ T cells 
tumor infi ltration and IFN-γ gene expression patterns 
in melanoma [35] and lung [6]. We used a gene 

A B

Figure 4 Immunological differences in HR+HER2- and TN breast tumors. Jitterplots show distributions of IFNγ+ signature GSVA scores (y-axis; 
A) and TMB (y-axis; B) for immune high HR+HER2- and TN tumors (x-axes).  TN tumors are blue and HR+HER2- tumors are red.

https://www.jelsciences.com/articles/jbres2008s.zip
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signature that contains four genes (i.e., IFNγ, CD274, 
LAG3, and CXCL9; IFNγ+ signature), previously used to 
stratify urothelial and non-small-cell lung carcinoma 
cancer patient response to anti-PD-L1 durvalumab 
treatment to evaluate the immune-high and immune-
low tumors [6]. When evaluating HR+HER2- and TN 
breast cancer, the mean of the  IFNγ+ signature score 
was higher in TN than HR+HER2- (0.08 vs. -0.047; 
Welch’s 2 sided T-test p  = 5.9x10-13), but the ranges 
of the scores were overlapping (TN: [-0.32, 0.41]; 
HR+: [-0.37, 0.32]). Similarly, when evaluating the 
immune-high group of HR+HER2- and TN tumors, 
the means of the IFNγ+signature scores are diff erent, 
though less statistically signifi cant (Welch’s  2 sided 
T-test, p-value = 2.2x10-6; fi gure 4A). Notably, 

when testing the IFNγ+ signature score between 
immune high and low cluster tumors, immune high 
tumors had signifi cantly higher signatures scores 
irrespective of the breast cancer subtype (HR+HER2- 
Mann-Whitney test, p-value = 6.3x10-62, TN Mann-
Whitney test, p-value = 1.3x10-18).

Tumor mutations generate neo-antigens and 
immune infi ltrate can increase with an adaptive 
immune response to these neo-antigens increasing 
immune infi ltrate.  Tumor mutational burden also can 
determine response to ICI that is tumor-type agnostic 
[36].  To determine whether tumor mutational 
load diff ered between breast cancer subtypes, we 
calculated each tumor’s Tumor Mutational Burden 

A B

C D

Figure 5 vCAF and mCAF populations are higher in HR+HER2- tumors than in TN breast tumors.  GSVA scores for four cancer associated 
fi broblast populations that have previously been associated with prognosis [26]. Immune infi ltrate status is on the X axis for HR (red) and TN 
(blue) with the GSVA score on the Y axis.  Panels show the vascular (vCAF, A), extracellular matrix (mCaf, B), developmental (dCAF, C), and cell 
cycle related (cCAF, D) fi broblast populations.
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(TMB). When evaluating the immune high group, the 
TN tumors contained a signifi cantly higher TMB than 
the HR+HER2- tumors (Mann-Whitney test, p-value 
= 3.2X10-15; fi gure 4B). The diff erence in the median 
mutational burden between immune-high and 
immune-low was also statistically signifi cant (Mann-
Whitney test p-value = 1.2X10-5) with the immune 
high tumors having more TMB than the immune low 
tumors. The relationship between somatic mutations 
and the IFNγ+ signature shows a moderate correlation 
(Spearman’s ρ = 0.33), indicating that the immune 
response in breast cancer may in part be driven by 
somatic mutation derived neoantigens. Furthermore, 
evaluation of other mutation types (insertion, 
missense, nonsense) similarly showed signifi cant 
diff erences between immune-high HR+HER2- and 
TN and immune-low HR+HER2- and TN (all p < 
0.001, data not shown).

Fibroblast population associated with worse 
prognosis in breast cancer are higher in HR+HER2- 
tumors in both the immune-high and immune-low 
clusters. 

Many diff erent populations of cancer-associated 
fi broblasts have been identifi ed in breast cancer. Four 
populations that have been associated with prognosis 
in breast cancer in the TCGA include cell cycle related 
(cCAF), developmental (dCAF), extracellular matrix 
(mCAF), and vascular (vCAF) cancer associated 
fi broblasts. The vCAF signature was an independent 
prognostic indicator of developing metastatic disease. 
In the immune-high populations, the HR+HER2- 
tumors expressed higher vCAF fi broblast signature 
than the immune high TN tumors (p-value = 1.7x10-
11).  In the immune-low, the same trend was seen but 
there a less signifi cant diff erence (p-value=7.8x10-3) 
(Figure 5A). The immune-high HR+HER2- tumors 
also had higher mCAF expression than the TN tumors 
(p-value=2.1x10-13).  This mCAF signature has also 
been associated with increased risk of disseminated 
disease (Figure 5B) [28].  TN tumors had higher cCAF 
and dCAF expression than HR+HER2- tumors in both 
immune-high and immune-low populations (Figure 
5(C,D)).  These fi broblast types are not associated 
with tumor outcome [28]. There was an association 
between higher vCAF and lower TH1 tumor immune 
infi ltrate in both the HR+HER2- immune-high (ρ = 
-0.6 p-value < 2.2x10-16) and HR+HER2- immune-
low (ρ = -0.41 p-value = 6.5x10-13) and the TN 
immune-high (ρ = -0.36 p-value = 0.00065) but 
not in TN immune-low (ρ = -0.18 p-value = 0.3) 
(Supplementary fi gure 6(A,B)).   There was also a 

signifi cant negative association of fi broblasts to TH1 
immune infi ltrate in both the HR+HER2- immune-
high (ρ = -0.63 p-value < 2.2x10-16) and HR+HER2- 
immune-low (ρ = -0.45 p-value = 1.6x10-15) as well 
as TN immune-high (ρ = -0.42 p-value = 6.9x10-5) 
and TN immune-low (ρ = -0.44 p-value = 0.0075) 
(Supplementary fi gure 6(C,D)). 

Discussion
Expression analysis has identifi ed subtypes 

of human breast cancer and can be used to guide 
treatment [37] but the diff erences in immune 
environment between the subtypes and how to 
address them in breast cancer remains unknown 
with relatively few breast cancer patients benefi tting 
from immune based therapies.  Evaluating immune 
gene clustering in TN and HR+HER2- breast cancer, 
the breast cancers did not stratify into canonical 
subtypes but rather divided into immune-high and 
immune-low tumors containing both subtypes.  
These immune-high and immune-low groups could 
be seen in two independent datasets, the TCGA and 
METABRIC [38,39]. Evaluation of the immune-high 
TN and HR+HER2- tumors demonstrated that they did 
not have signifi cant diff erences in several common 
signatures associated with response to ICI and that 
the HR+HER2- immune high tumors contained 
both luminal A and luminal B tumors and the best 
and worst prognostic immune environments.  The 
largest diff erences in expression between immune 
high TN and HR+HER2- tumors were that fi broblasts, 
specifi cally mCAF and vCAF that are associated with 
worse prognosis in breast cancer and were highest in 
HR+HER2- tumors while expression of Th1 and Th2 
genes were highest in TN tumors. 

We compared several signatures that are 
associated with increased immune response and 
improved response to ICIs including CD8+ and Treg 
signatures and the IFNγ signature [40]. The IFNγ+ 
gene signature can identify tumors that respond to 
anti-PD-L1 ICI durvalumab in 304 NSCLC patients 
and 103 urothelial cell cancers independent of PD-L1 
expression [6]. The CD8+ and Treg signatures have 
been associated with improved response to immune 
checkpoint inhibitors in non-small cell lung cancer 
and urothelial cancer [6,7].  However, while all of 
these signatures were higher in the immune-high 
breast tumors, there were no signifi cant diff erences 
between HR+HER2- and TN immune-high tumors.  In 
immune-low tumors both CD8+, and Treg signatures 
were higher in TN compared to HR+HER2- (Figure 

https://www.jelsciences.com/articles/jbres2008s.zip
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3D). There was no diff erence between CD8+ and Treg 
signatures between immune-high HR+HER2- and TN 
tumors and we found HR+HER2- and TN immune-
high tumors to have similar ranges of IFNγ+ signature 
GSVA scores (Figure 4A). In immunogenic tumors 
such as melanoma or NSCLC, neo-antigens were 
associated with T cell mediated anti-tumor responses. 
Increased mutational load predicted a higher rate 
of response to anti-CTLA4 in melanoma and anti-
PD-1 in lung cancer [41,42]. There was higher TMB 
in TN verses HR+HER2- tumors (p-value = 3.16X10-
15).  Furthermore, comparing the immune high TN 
and HR+HER2- tumors, there was more TMB in the 
TN immune high tumors (p-value = 3x10-5). This 
might explain the increased TH1 and TH2 immune 
infi ltrate in the TN immune high tumors as compared 
to the HR+HER2- immune high tumors (Figure 4B) 
explaining the increased adaptive immune reactivity 
in TN immune-high tumors. 

Six common immune environments can be seen 
across 33 diverse tumor types and determine tumor 
prognosis and response to therapy [27], with the 
C3 immune environment having the best clinical 
outcome.  In this study, there was only six immune 
high TN tumors with a C3 immune environment 
therefore the majority of immune-high C3 tumors 
were HR+HER2-.  Most immune-high TN tumors were 
the C2 immune subtype (Figure 2Bi). The C6 tumors 
predict the worst prognosis with increased TGF-β 
expression and are associated with increased tumor 
cell migration and activation of immune suppression 
from the tumor stroma in breast cancer [43,44].  
Only HR+HER2- immune-high tumors had the C6 
immune environment (Figure 2Bii).  In the immune-
high group, HR+HER2- breast cancer contained 
the best prognosis (C3) and worse prognosis (C6) 
tumors supporting that there are diff erences between 
immune-high TN and HER2+HER2- tumors that may 
explain why they have diff erential prognosis and 
response to ICI.  We observed two major diff erences 
between HR+HER2- and TN within the immune-high 
tumors, TN immune-high tumors were enriched 
for Th1 and Th2 T cells while HR+HER2- immune-
high tumors were enriched for fi broblasts, and 
TN immune-high tumors had increased TMB as 
compared to immune-high HR+HER2- tumors 
(Figure 3C,4B).

The increased expression of CAF in HR+HER2- 
immune-high breast tumors may suggest a 
mechanism that prevents these tumors from 
developing an appropriate anti-tumor immune 

response.  The interaction between the tumor and 
stroma is important in determining the breast cancer 
subtype that develops [45,46].  The tumor stroma 
further can determine metastatic potential [47], 
resistance to chemotherapy [48], and modulating the 
immune response to the tumor [46].  When looking 
at breast cancer as a whole, expression of stromal 
and fi broblast components have been associated 
with worse prognosis including PDGFRA, PDGFRB, 
CXCL1, CXCL14, CD10, and CD36 [49]. CAFs have 
been associated with mesenchymal stem cells and 
inducing a wound healing response associated 
with immunosuppression [50]. In breast cancer, 
CAF expression has been correlated with decreased 
CD8+ T cells and increased macrophages [51]. Of 
interest, in a recent study of human breast cancer 
samples, four CAF subtypes were identifi ed and the 
vascular (vCAF) and mesenchymal (mCAF) subtypes 
associated with developing metastatic disease [28].  
In the TCGA dataset, both of those subtypes of CAF 
are signifi cantly increased in the HR+HER2- breast 
tumors as compared to the TN breast tumors and there 
is higher signifi cance in the immune-high population 
(Figure 5(A,B)).  In this study we were unable to 
evaluate whether CAFs induce immunosuppression 
in immune-high HR+HER2- tumors but further 
evaluation of CAF in patients that do not respond to 
ICI is needed. 

There are a few limitations in this study. The 
dataset lacks adequate tumor stage information thus 
we could not investigate the relationship between our 
fi ndings and the stage of breast cancer. 

Conclusion
Previous studies have shown that more advanced 

tumors have decreased immune infi ltrate and 
increased immunosuppression [52]. Most importantly, 
with the lack of equivalent -omics and outcome data 
on ICI treated tumors, we could not evaluate the 
effi  cacy of ICIs on immune-high and -low tumors or 
compare ICI outcomes between HR+HER2- and TN 
tumors. While there have been some data showing 
benefi t in HR+HER2- patients receiving neoadjuvant 
pembrolizumab with chemotherapy, the magnitude 
of response was 24.3% pCR compared to 64.8% pCR 
with addition of pembrolizumab to chemotherapy 
in TN patients [19,20]. Still, the biomarkers that 
predict response to ICI evaluated showed no 
signifi cant diff erences between HR+HER2- and TN 
in the immune-high group: HR+HER2- and TN have 
similar expression of CD8+ and Treg expression while 
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immune high TN does have higher TMB. We do fi nd 
immune-high HR+HER2- tumors have increased CAF 
while immune-high TN tumors have increased helper 
T cells and increased expression of T cell modifi cation 
genes. Further studies will need to be performed to 
determine whether these diff erences may aff ect how 
HR+HER2- and TN immune-high tumors respond to 
ICI.
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