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Abstract

Background: Immune therapy has revolutionized the treatment of certain
cancers including melanoma and lung cancer. Breast cancer has fewer tumors with
high immune infiltrate and Immune Checkpoint Inhibitor (ICI) therapy has shown the
most significant responses in the Triple Negative (TN) subtype although roles are
emerging in the other subtypes. The presence of Tumor Infiltrating Lymphocytes
(TIL) is predictive of response to ICI therapy in metastatic TN and associated with
better survival in local TN disease. Hormone Receptor (HR) positive HER2 negative
(HR+HER2-) breast tumors do not show improved prognosis with increasing TIL
and only a small portion of HR+HER2- tumors respond to ICI in both metastatic
and local disease. We therefore sought to identify genetic differences between TN
and HR+HER2- tumors to identify how these may contribute to their differences in
immune infiltrate.

Methods: We contrasted immune-associated gene expression between 119
TN and 475 HR+HER2- breast tumors from The Cancer Genome Atlas (TCGA)
and confirmed our findings from 299 TN and 1369 HR+HER2- breast tumors in
METABRIC.

Results: We found that TN and HR+HER2- tumors can be grouped into immune-
high or -low tumors, with both subtypes represented in the immune-high group
(40% HR+HER2- tumors of both Luminal A and Luminal B type and 71% TN tumors)
in the TCGA. The genes upregulated in the immune-high cluster included GZMB,
CXCL9, and IDO1 (Log2FC > 2; Adj. p < 10X10-40). The largest expression difference
between the immune-high TN and HR+HER2- tumors was that TN tumors had more
abundant Th1 and Th2 CD4+ T cells while HR+HER2- tumors had more abundant
fibroblasts (Log2FC > 0.3; Adj p < 10X10-10).

Conclusions: Our data suggest that an immune-high signature is not dictated
by breast cancer subtype. However, fibroblasts, particularly fibroblast subsets
associated with worse outcome, are more abundant in the immune-high HR+HER2-
tumors.
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Abbreviations

TIL: Tumor Infiltrating Lymphocytes; HR+, HER2-
: Hormone Receptor; HER2+: HER2 Positive; TN:
Triple Negative; ICI: Immune Checkpoint Inhibitor;
FC: Fold Change; GSVA: Gene Set Variation Analysis;
CAF: Cancer Associated Fibroblast

Introduction

The histological subtyping of breast cancer, based
on Hormone Receptors (HR) (estrogen receptor, ER,
progesterone receptor, PR) and human epidermal
growth factor receptor ERBB2 (HER2) is essential
to clinical management, determining prognosis,
and treatment of breast cancer [1-4]. The histologic
subtypes have differences in the type and amount of
immune infiltrate but a spectrum of immune infiltrate
exist in all breast cancer subtypes [5]. The benefit of
Immune Checkpoint Inhibitors (ICI) have been seen
in metastatic cancers including renal cell, melanoma,
and non-small-cell lung cancer [5-7]. The predictive
biomarkers associated with response to ICI include
PD-L1 expression, IFNy expression, and increased
somatic tumor mutations [6,7]. Also, a determinant
for response to ICI therapy is the presence of an
adaptive immune response within a tumor prior to
treatment [8-11]. Breast cancer doesnot have the same
level of adaptive immune infiltrate seen in melanoma
and non-small cell lung cancer although the level
of immune infiltrate in breast cancer is associated
with clinical prognosis [12]. Breast tumors with
greater than 50% Tumor Infiltrating Lymphocytes
(TIL) show improved pathologic complete response
to neoadjuvant chemotherapy (p < 0.01)(11) and
increased intratumoral CD8+ T cells predict improved
Overall Survival (0S) (p < 0.01) [13]. In the adjuvant
setting, each 10% increase of TIL predicted a 15%
improved Disease Free Survival (DFS) (p = 0.025) and
17% improved OS (p = 0.023) in Triple Negative (TN)
but not hormone receptor positive HER2 negative
(HR+HER2-) breast cancer [14,15].

In clinical studies, response to ICIs have best been
seen in metastatic TN breast cancer which had a 19%
response rate to pembrolizumab as a monotherapy
[16]. In contrast, metastatic HR+HER2 breast
cancer either with pembrolizumab as a single agent
(KEYNOTE-028) or in combination with a CDK4/6
inhibitor had an overall response rate of ~12%
[17,18]. In neoadjuvant therapy, pembrolizumab has
improved pathologic Complete Response (pCR) inboth
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HR+HER2- and TN. However, while the addition of
pembrolizumab improved pCR in HR+HER2- tumors
from 15.6% to 24.3%, the addition of pembrolizumab
improves pCR in TN from 51.2% to 64.8% [19,20].
The same magnitude of benefit of ICI therapy seen in
TN breast cancer was not seen in HR+HER2- breast
cancer, leading to the classification of HR+HER2-
breast cancer as “cold” tumors that do not respond to
immune therapy.

Targeted sequencing technology has proved
useful for elucidating the complex relationships
between cancer and the immune system through RNA
expression. We used the HTG Oncology and Immune-
associated gene sets because they had previously been
used to detect gene expression patterns that predicted
responses in oncology clinical trials. For example,
HTG Oncology’s immune-associated gene set was
used to both demonstrate ICI therapy responders and
predict resistance to ICIs in clinical trials across a wide
variety of cancers including urothelial, colon, and
lung [21,22] and has been used to identify neoadjuvant
ICI response in TN breast cancer in the GeparNeuvo
trial [23]. The HTG oncology panel has also been used
in breast cancer clinical trials to determine changes
in expression that predict treatment effect with the
CDK4/6 therapy palbociclib in HR+HER2- breast
cancer in PALOMA2 and PALOMA3 [24].

We questioned whether we could identify distinct
immune gene expression patterns in HR+HER2-
and TN breast cancers that could account for the
differences in immune infiltrate between these
subtypes. Analyzing gene expression data from 594
breast cancer samples using the HTG Oncology and
Immuno-oncology panels, 119 TN and 475 HR+HER2-
from The Cancer Genome Atlas (TCGA), we found two
distinct subgroups of immune-high and immune-
low tumors in both subtypes. This was confirmed in
1668 HER2- tumors in the METABRIC dataset, 299 TN
and 1369 HR+HER2- breast tumors. After estimating
relative cellular phenotype abundances from bulk
RNA sequencing, we found cancer-associated
fibroblasts more abundant in HR+HER2- tumors,
particularly higher in immune-high HR+HER2-
tumors than immune-high TN tumors, while helper
T cell populations were more abundant in immune-
high TN tumors. These differences between immune
high TN and HR+HER2- tumors may contribute to
the differences in response to ICI but further work
is needed to determine if CAF may provide targets to
improve HR+HER2- response to ICI.
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Materials and Methods

Collection of datasets from The Cancer Genome
Atlas (TCGA)

Normalized, bulk RNA sequencing expression data
and clinical annotations were downloaded from the
UCSC Xena TCGA portal for 119 TN and 475 HR+HER2-
(412 ER+PR+, 63 ER+PR-, 0 ER-PR+) breast cancer
patients. Therefore the TCGA analysis set included
20% TN and 80% HR+HER2- tumors. HR+HER2-
and TN subtypes were defined using the clinical
guidelines from the American Society of Clinical
Oncology and are publicly available from previous
studies of breast tumors in TCGA [25]. Mutation data
(MAF) files were downloaded from the GDC Data
Portal and mutational burden was analyzed using
maftools [26]. The METABRIC gene expression and
annotation was downloaded from the cBioPortal for
Cancer Genomics and included 1369 HR+HER2- and
299 TN tumors. Annotations for immune subtypes
(C1-C6) were collected from Thorsson V, et al. [27].
Annotations for the fibroblast subtypes were collected
from Bartoschek M, et al. [28].

Oncology- and immune-associated gene sets

RNA expression was reported for 20,530 genes.
We divided genes into two categories: oncology- and
immune-associated (Supplementary Table 1(A,B)).
2,500 were captured in the HTG Edge Seq Oncology
Biomarker and 543 genes were captured in the HTG
Immune assays (HTG Molecular Diagnostics, Inc.,
Tucson, AZ).

K-means clustering and silhouette analysis

To determine the optimal number of clusters for
k-means, silhouette analysis (from the R ‘cluster’
and ‘factoextra’ packages) was performed on the
onco- and immune-associated genes independently.
K-means clustering was performed (k = 2; Hartigan
and Wong algorithm, ‘kmeans’ from the R ‘stats’
package) on RNA expression values for onco- and
immune-associated genes groups separately. Using
Silhouette analysis identified k = 2 as optimal number
of clusters using the HTG immune genes and oncogene
sets (Supplementary figure 1(A-D)). Hierarchical
clustering of the most variable genes in the immune-
associated gene set reveals two immune-associated
gene expression patterns.
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Table 1: RNA sequencing cell types abundance estimation.
Class Cell type
aDC
cbC
Dendritic DC
iDC
pDC
B cells
B cells Class-switched memory B cells
Plasma cells
proB cells
Neutophils
NK
NKT
CD4+ T cells

CD4+ naive T cells

NK cells

CD4+ T cells CD4+ memory T cells
CD4+ effector memory T cells
CD4+ central memory T cells
CD8+ T cells
D8+ T cells CD8+ naive T cells
CD8+ effector memory T cells
CD8+ central memory T cells
Th1 cells
Th2 cells
Treg cells
Tgd cells
M1 macrophages
M2 macrophages

Monocytes

Gene Set Variation Analysis (GSVA) and cell
type frequency estimation

GSVA scores were calculated to measure gene set
variation relative to the variation observed for all
genes. To calculate sample-wise enrichment of a gene
set, we used ‘GSVA’ in R [29]. Cell type enrichment
was estimated with the ‘xCell’ package in R [30]. We
restricted our analysis to immune relevant cell types
(Table 1). To confirm xCell enrichment scores, we
calculated GSVA scores for independent gene sets for
CD8+ T cells (CD8A, CD8B, CD3D) or Treg (IL2RA,
CCR4, CTLA4, CD28, ICOS, FOXP3, CD5).

Differential gene expression and cell enrichment

To identify differentially expressed genes or
differentially abundant cell types between two
groups we performed similar tests. We used limma
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Figure 1 Transcriptomic clustering of immune- and onco-associated genes in HR+HER2- and TN breast tumors. Heatmaps show log, gene
expression for 594 tumors (y-axis). The x-axis contains the most variably expressed 25 and 28 genes in immune- and oncology-associated
gene subgroups, respectively (A,C). Heatmap annotation tracks include K-means (k = 2) cluster assignments, generated from either all immune-
associated or onco-associated genes. Volcano plots show relationships between log, fold change (FC; x-axis) and Benjamini-Hochberg adjusted
p-values (y-axis) for differentially expressed genes in HR+HER2- and TN subtypes using immune-associated (B) or oncology associated (D)
genes. Differentially expressed genes more highly expressed in HR+HER2- tumors are red and pink, while genes more highly expressed in
TN tumors are blue and light blue. In 1B, the cutoffs are (Adj. p-value < 0.05; abs(Log,FC) > 2) for red and blue, and (Adj. p-value < 0.05; 1 <
abs(Log,FC) < 2) for pink and light blue. In 1D, the cutoffs are (Adj. p-value < 0.05; abs(Log,FC) > 4) for red and blue, and (Adj. p-value < 0.05;

1 < abs(Log,FC) < 4) for pink and light blue.

in R [31] to calculate the log2fold change (log2FC)
which describes the differences in gene expression or
cell-type frequency between the designated groups.
P-values were corrected for multiple hypothesis
testing using the “BH” (Benjamini Hochberg,
controlling the false discovery rate) method.

Results

Immune-associated gene expression is not
driven by clinical subtype

To investigate RNA expression profiles of
breast cancer samples, we analyzed 119 TN and 475

HR+HER2- breast cancer samples and limited our
analysis to the genes included in HTG Oncology’s
immune and oncology gene sets. For the immune-
associated genes, we began by performing k-means
clustering to determine the optimal number of groups
to immunologically characterize breast tumors (k = 2;
see Material and Methods and Supplementary figure
1(A,B)). Cluster 1 had higher median log2 expression
of 543 immune genes than Cluster 2 (0.29 vs. -0.32),
and thus Cluster 1 was referred to as ‘immune-high’
and Cluster 2 as ‘immune-low’ (Figure 1A). Cluster 1
contains 276 breast tumors, 84 TN tumors and 192
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HR+HER2- tumors (30% of the immune-high tumors
are TN and 70% of the immune-high tumors are
HR+HER2-). By PAM-50 typing, both cluster 1 and
cluster 2 HR+HER2- tumors included luminal A and
luminal B tumors and not a predominance of luminal
Bin cluster 1 (Figure 1A). Cluster 2 contains 318 breast
tumors, 35 TN and 283 HR+HER2. When we evaluated
which immune-associated genes were differentially
expressed between HR+HER2- and TN breast tumors
within the immune-high cluster, GATA3 (logFC = 3.8;
adj. p = 4x10-101) was most expressed in HR+HER2-
tumors (Figure 1B). GATA3 has previously been
associated with hormone receptor expression and
lower tumor grade [32].

We evaluated the same TN and HR+HER2- tumors
using the HTG oncology-associated genes to show
these tumors genetically matched the breast cancer
subtypes found by immunohistochemistry. We
performed k-means clustering of 2,500 oncology-
associated genes and found that, as expected, there
were two major clusters: Cluster 1 is 97% HR+HER2-
tumors (461 tumors) and Cluster 2 is 88% TN tumors
(107 tumors) (Figure 1C). The oncology-associated
genes overexpressed more in HR+HER2- are hormone
related including ESR1, ERBB4, and PGR which were
more expressed in cluster 1 (log FC > 5, p < 0.001 for
each) (Figure 1D).

We also performed Principal Component Analysis
(PCA) on the oncology and immune-associated
gene sets individually. For the oncology-associated
genes, the principal component capturing the
greatest variance (PC1: 16.4%) between tumor gene
expression strongly separates TN and HR+ tumors
(Supplementary figure 2A). This is illustrated
by a high area under the curve (AUC) of 0.96
(Supplementary figure 2B). However, in a PCA with
immune-associated genes, we find the first principal
component (PC1: 32%) is less associated with breast
cancer subtype than the second principal component
(PC2: 8%; AUCs = 0.74 vs. 0.91; Supplementary figure
2(C,D)).Thus, thehistologic subtypeisnot the primary
driver of immune-associated gene expression. When
evaluating all genes available in TCGA (n = 20,530) the
gene expression differences between immune-high
and low breast tumors included immune response
genes including T cell signaling (e.g., IL2RG) and
function (e.g., GZMB) (Figure 2A).

To provide independent validation of the immune-
high andimmune-lowclusters, we evaluated k-means
clusters in the METABRIC dataset. The METABRIC
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dataset includes 1658 HER2- breast tumors: 299 TN
and 1369 HR+HER2-. This dataset similarly showed
two immune clusters (see Materials and Methods); an
immune-high cluster 1 (240 TN and 384 HR+HER2-
tumors) and an immune-low cluster 2 (59 TN and
985 HR+HER2- tumors). In this data set, 80% of TN
tumors and 28% of HR+HER2- tumors were in the
immune-high cluster (Supplementary figure 3A).
Like the TCGA data set, when evaluating expression
of the oncology-associated gene set, breast tumors
generally clustered with their HR+HER2- or TN
subtype similar to results by immunohistochemistry.
There were 97% HR+HER2- and 12% TN in cluster
1 and 87% TN and 3% HR+HER2- in cluster 2
(Supplementary figure 3B).

Using immune clusters previously defined in
33 cancer types in TCGA [27], we evaluated if these
clusters distributed both within the oncology and
immune-k-means clusters (Figure 2B). We find
the immune-high samples are enriched in C2 as
compared to immune-low samples (55% vs 19%;
figure 2Bi). Immune-high contains 21% of C1 (wound
healing) where immune-low contains 44% of C1. The
immune subset C5 was absent in the TCGA dataset, as
seen in previous studies. When comparing oncology-
gene based clustering, TN tumors are enriched for
IFNy dominant (C2) tumors compared to HR+HER2-
(Figure 2Bii). This is illustrated by the difference in
the proportion of C2 tumors between HR+HER2- (C2
=31%) and TN (C2 = 55%) oncology k-means clusters.
This is concordant with previous reports describing
a stronger T cell presence in TN versus HR+HER2-
[12]. However, we find the cluster associated with the
best overall survival (C3) is almost exclusively found
in HR+HER2- tumors, with 21% of the HR+HER2-
tumors having a C3 immune environment compared
to 2.5% of the TN tumors. Forty-six percent of the
C3 tumors are immune-high and, as only six of the
C3 tumors were TN, the majority of immune-high C3
tumors are HR+HER2- (n = 43, 91% of all immune-
high C3 tumors) [27].

Inferred cell abundance differences between TN
and HR+HER2- tumors within the immune-high
cluster and the immune-low cluster.

To better understand the underlying differences
between TN and HR+HER2- immune-high and -low
clusters, we used gene signatures for CD8+ (Figure
3Ai) and CD4+ Treg (Figure 3Aii) T cells as proxy
for immune cell type abundance in the tumor. As
expected, GSVA scores for CD8+ T and CD4+ Treg
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cell signatures in the immune-high cluster were
twice that of the immune-low cluster. To estimate
immune cell enrichment with cell type signatures, we
used xCell(30) and confirmed that xCell scores were
behaving appropriately in this dataset including T
cells, B cells, dendritic cells, and macrophages that
were significantly higher in the immune-high cluster
(raw p < 10-50; figure 3B).

Next, we sought to characterize the immune
differences between TN and HR+HER2- within the
patients of the immune-high cluster. Contrasting
HR+HER2- and TN in the immune-high cluster, we
found TH1 and TH2 CD4+ T cells are more abundant
in TN than HR+HER2- and fibroblasts are more
abundant in HR+HER2- tumors than TN tumors
(log2FC > 0.3; p < 10-10; figure 3C). There was no
association between Thi and Th2 infiltrate in either
immune-high (p = 0.15; p = 0.1859) or immune-low
(p = 0.07; p = 0.6735) TN breast cancer. However, in
HR+HER2- tumors there was a positive association
with increased TH1 tumors also having increased
TH2 infiltrate in both immune-high (p = 0.29; p
<= 0.0001) and immune-low (p = 0.21; p = 0.0005)
(Supplementary figure 4). In a similar analysis of
the immune-low cluster, we observe more Th1 and
Th2 CD4+ T cells in TN than in HR+HER2- tumors
and more fibroblasts in HR+HER2- tumors than TN
tumors (Supplementary figure 5). This suggests the
immune infiltrate may be impacted by the differences
in fibroblasts between HR+HER2- and TN subtype
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regardless of the tumors being in the immune-high
or immune-low groups (Supplementary tables (2,3)).

Immune checkpoint genes are differentially
expressed between TN and HR+HER2- in the
immune-high cluster but not in the immune-low
cluster.

Immune checkpoint genes LAG3, ICOS, CTLA4,
PD1 (PDCD1), PDL1 (CD274), PDL2 (PDCDi1LG2),
and OX40 (TNFRSF4), have been shown to predict
responsiveness of tumors to ICI therapy [33,34].
Testing for differential expression levels of these
genes, we observed statistically significant higher
expression in the immune-high group than the
immune-low group as expected (Figure 3D, Welch’s
2 sided T-test; adj. p < 9X10-36). In the immune low
group the immune checkpoint target genes LAG3,
ICOS, PD-1, and PD-L1 were not statistically different
between TN and HR+HER2- tumors (adjusted p >
0.05) but CTLA4 and 0X40 were higher in TNBC
than HR+HER2- (adjusted P-value p = 0.016 each).
Irrespective of hormone receptor status, immune
checkpoint expression was significantly higher in the
immune high cluster than in the immune low cluster
(adjusted P-value p < 0.001) and in the immune high
group there were no significant differences between
HR+HER2- and TN tumors.

ICI efficacy is also associated with CD8+ T cells
tumor infiltration and IFN-y gene expression patterns
in melanoma [35] and lung [6]. We used a gene
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Figure 4 Immunological differences in HR+HER2- and TN breast tumors. Jitterplots show distributions of IFNy* signature GSVA scores (y-axis;
A) and TMB (y-axis; B) for immune high HR+HER2- and TN tumors (x-axes). TN tumors are blue and HR+HER2- tumors are red.
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cycle related (cCAF, D) fibroblast populations.

signature that contains four genes (i.e., [IFNy, CD274,
LAG3,and CXCL9; IFNy+ signature), previously used to
stratify urothelial and non-small-cell lung carcinoma
cancer patient response to anti-PD-L1 durvalumab
treatment to evaluate theimmune-high and immune-
low tumors [6]. When evaluating HR+HER2- and TN
breast cancer, the mean of the IFNy+ signature score
was higher in TN than HR+HER2- (0.08 vs. -0.047,;
Welch’s 2 sided T-test p = 5.9x10-13), but the ranges
of the scores were overlapping (TN: [-0.32, 0.41];
HR+: [-0.37, 0.32]). Similarly, when evaluating the
immune-high group of HR+HER2- and TN tumors,
the means of the IFNy+signature scores are different,
though less statistically significant (Welch’s 2 sided
T-test, p-value = 2.2x10-6; figure 4A). Notably,

when testing the IFNy+ signature score between
immune high and low cluster tumors, immune high
tumors had significantly higher signatures scores
irrespective of the breast cancer subtype (HR+HER2-
Mann-Whitney test, p-value = 6.3x10-62, TN Mann-
Whitney test, p-value = 1.3x10-18).

Tumor mutations generate neo-antigens and
immune infiltrate can increase with an adaptive
immune response to these neo-antigens increasing
immune infiltrate. Tumor mutational burden also can
determine response to ICI that is tumor-type agnostic
[36]. To determine whether tumor mutational
load differed between breast cancer subtypes, we
calculated each tumor’s Tumor Mutational Burden
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(TMB). When evaluating the immune high group, the
TN tumors contained a significantly higher TMB than
the HR+HER2- tumors (Mann-Whitney test, p-value
= 3.2X10-15; figure 4B). The difference in the median
mutational burden between immune-high and
immune-lowwas also statistically significant (Mann-
Whitney test p-value = 1.2X10-5) with the immune
high tumors having more TMB than the immune low
tumors. The relationship between somatic mutations
and the IFNy+ signature shows a moderate correlation
(Spearman’s p = 0.33), indicating that the immune
response in breast cancer may in part be driven by
somatic mutation derived neoantigens. Furthermore,
evaluation of other mutation types (insertion,
missense, nonsense) similarly showed significant
differences between immune-high HR+HER2- and
TN and immune-low HR+HER2- and TN (all p <
0.001, data not shown).

Fibroblast population associated with worse
prognosis in breast cancer are higher in HR+HER2-
tumors in both the immune-high and immune-low
clusters.

Many different populations of cancer-associated
fibroblasts have been identified in breast cancer. Four
populations that have been associated with prognosis
in breast cancer in the TCGA include cell cycle related
(cCAF), developmental (dCAF), extracellular matrix
(mCAF), and vascular (VCAF) cancer associated
fibroblasts. The vCAF signature was an independent
prognostic indicator of developing metastatic disease.
In the immune-high populations, the HR+HER2-
tumors expressed higher vCAF fibroblast signature
than the immune high TN tumors (p-value = 1.7x10-
11). In the immune-low, the same trend was seen but
there a less significant difference (p-value=7.8x10-3)
(Figure 5A). The immune-high HR+HER2- tumors
also had higher mCAF expression than the TN tumors
(p-value=2.1x10-13). This mCAF signature has also
been associated with increased risk of disseminated
disease (Figure 5B) [28]. TN tumors had higher cCAF
and dCAF expression than HR+HER2- tumors in both
immune-high and immune-low populations (Figure
5(C,D)). These fibroblast types are not associated
with tumor outcome [28]. There was an association
between higher vCAF and lower TH1 tumor immune
infiltrate in both the HR+HER2- immune-high (p =
-0.6 p-value < 2.2x10-16) and HR+HER2- immune-
low (p = -0.41 p-value = 6.5x10-13) and the TN
immune-high (p = -0.36 p-value = 0.00065) but
not in TN immune-low (p = -0.18 p-value = 0.3)
(Supplementary figure 6(A,B)). There was also a
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significant negative association of fibroblasts to TH1
immune infiltrate in both the HR+HER2- immune-
high (p = -0.63 p-value < 2.2x10-16) and HR+HER2-
immune-low (p = -0.45 p-value = 1.6x10-15) as well
as TN immune-high (p = -0.42 p-value = 6.9x10-5)
and TN immune-low (p = -0.44 p-value = 0.0075)
(Supplementary figure 6(C,D)).

Discussion

Expression analysis has identified subtypes
of human breast cancer and can be used to guide
treatment [37] but the differences in immune
environment between the subtypes and how to
address them in breast cancer remains unknown
with relatively few breast cancer patients benefitting
from immune based therapies. Evaluating immune
gene clustering in TN and HR+HER2- breast cancer,
the breast cancers did not stratify into canonical
subtypes but rather divided into immune-high and
immune-low tumors containing both subtypes.
These immune-high and immune-low groups could
be seen in two independent datasets, the TCGA and
METABRIC [38,39]. Evaluation of the immune-high
TNand HR+HER2- tumors demonstrated that they did
not have significant differences in several common
signatures associated with response to ICI and that
the HR+HER2- immune high tumors contained
both luminal A and luminal B tumors and the best
and worst prognostic immune environments. The
largest differences in expression between immune
high TN and HR+HER2- tumors were that fibroblasts,
specifically mCAF and vCAF that are associated with
worse prognosis in breast cancer and were highest in
HR+HER2- tumors while expression of Th1 and Th2
genes were highest in TN tumors.

We compared several signatures that are
associated with increased immune response and
improved response to ICIs including CD8+ and Treg
signatures and the IFNy signature [40]. The IFNy+
gene signature can identify tumors that respond to
anti-PD-L1 ICI durvalumab in 304 NSCLC patients
and 103 urothelial cell cancers independent of PD-L1
expression [6]. The CD8+ and Treg signatures have
been associated with improved response to immune
checkpoint inhibitors in non-small cell lung cancer
and urothelial cancer [6,7]. However, while all of
these signatures were higher in the immune-high
breast tumors, there were no significant differences
between HR+HER2- and TN immune-high tumors. In
immune-low tumors both CD8+, and Treg signatures
were higher in TN compared to HR+HER2- (Figure
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3D). There was no difference between CD8+ and Treg
signatures between immune-high HR+HER2- and TN
tumors and we found HR+HER2- and TN immune-
high tumors to have similar ranges of IFNy+ signature
GSVA scores (Figure 4A). In immunogenic tumors
such as melanoma or NSCLC, neo-antigens were
associated with T cell mediated anti-tumor responses.
Increased mutational load predicted a higher rate
of response to anti-CTLA4 in melanoma and anti-
PD-1 in lung cancer [41,42]. There was higher TMB
in TN verses HR+HER2- tumors (p-value = 3.16X10-
15). Furthermore, comparing the immune high TN
and HR+HER2- tumors, there was more TMB in the
TN immune high tumors (p-value = 3x10-5). This
might explain the increased TH1 and TH2 immune
infiltrate in the TN immune high tumors as compared
to the HR+HER2- immune high tumors (Figure 4B)
explaining the increased adaptive immune reactivity
in TN immune-high tumors.

Six common immune environments can be seen
across 33 diverse tumor types and determine tumor
prognosis and response to therapy [27], with the
C3 immune environment having the best clinical
outcome. In this study, there was only six immune
high TN tumors with a C3 immune environment
therefore the majority of immune-high C3 tumors
were HR+HER2-. Mostimmune-high TN tumors were
the C2 immune subtype (Figure 2Bi). The C6 tumors
predict the worst prognosis with increased TGF-B
expression and are associated with increased tumor
cell migration and activation of immune suppression
from the tumor stroma in breast cancer [43,44].
Only HR+HER2- immune-high tumors had the C6
immune environment (Figure 2Bii). In the immune-
high group, HR+HER2- breast cancer contained
the best prognosis (C3) and worse prognosis (C6)
tumors supporting that there are differences between
immune-high TN and HER2+HER2- tumors that may
explain why they have differential prognosis and
response to ICI. We observed two major differences
between HR+HER2- and TN within the immune-high
tumors, TN immune-high tumors were enriched
for Thi and Th2 T cells while HR+HER2- immune-
high tumors were enriched for fibroblasts, and
TN immune-high tumors had increased TMB as
compared to immune-high HR+HER2- tumors
(Figure 3C,4B).

The increased expression of CAF in HR+HER2-
immune-high breast tumors may suggest a
mechanism that prevents these tumors from
developing an appropriate anti-tumor immune
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response. The interaction between the tumor and
stroma is important in determining the breast cancer
subtype that develops [45,46]. The tumor stroma
further can determine metastatic potential [47],
resistance to chemotherapy [48], and modulating the
immune response to the tumor [46]. When looking
at breast cancer as a whole, expression of stromal
and fibroblast components have been associated
with worse prognosis including PDGFRA, PDGFRB,
CXCL1, CXCL14, CD10, and CD36 [49]. CAFs have
been associated with mesenchymal stem cells and
inducing a wound healing response associated
with immunosuppression [50]. In breast cancer,
CAF expression has been correlated with decreased
CD8+ T cells and increased macrophages [51]. Of
interest, in a recent study of human breast cancer
samples, four CAF subtypes were identified and the
vascular (VvCAF) and mesenchymal (mCAF) subtypes
associated with developing metastatic disease [28].
In the TCGA dataset, both of those subtypes of CAF
are significantly increased in the HR+HER2- breast
tumors as compared to the TN breast tumors and there
is higher significance in the immune-high population
(Figure 5(A,B)). In this study we were unable to
evaluate whether CAFs induce immunosuppression
in immune-high HR+HER2- tumors but further
evaluation of CAF in patients that do not respond to
ICI is needed.

There are a few limitations in this study. The
dataset lacks adequate tumor stage information thus
we could not investigate the relationship between our
findings and the stage of breast cancer.

Conclusion

Previous studies have shown that more advanced
tumors have decreased immune infiltrate and
increasedimmunosuppression[52].Mostimportantly,
with the lack of equivalent -omics and outcome data
on ICI treated tumors, we could not evaluate the
efficacy of ICIs on immune-high and -low tumors or
compare ICI outcomes between HR+HER2- and TN
tumors. While there have been some data showing
benefit in HR+HER2- patients receiving neoadjuvant
pembrolizumab with chemotherapy, the magnitude
of response was 24.3% pCR compared to 64.8% pCR
with addition of pembrolizumab to chemotherapy
in TN patients [19,20]. Still, the biomarkers that
predict response to ICI evaluated showed no
significant differences between HR+HER2- and TN
in the immune-high group: HR+HER2- and TN have
similar expression of CD8+ and Treg expression while
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immune high TN does have higher TMB. We do find
immune-high HR+HER2- tumors have increased CAF
while immune-high TN tumors have increased helper
T cells and increased expression of T cell modification
genes. Further studies will need to be performed to
determine whether these differences may affect how
HR+HER2- and TN immune-high tumors respond to
ICI.
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