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Abstract
Falls are a pervasive problem facing elderly populations, associated with signifi cant 

morbidity and mortality. Prompt recognition of falls, especially in elderly people with 
cognitive or physical impairments who cannot raise the alarm themselves, is a challenge. 
To this end, wearable sensors can be used to detect fall behaviour, including smartwatches 
and wristbands. These devices are limited by their intrusiveness, require user compliance 
and have issues around endurance and comfort, reducing their effectiveness in elderly 
populations. They can also only target patients already recognised as falls risks, and cannot 
apply to non-identifi ed patients. Leveraging state of the art AI deep learning, we introduce two 
types of automated fall detection techniques using visual information from cameras: 1) self-
supervised autoencoder, distinguishing falls from normal behaviour as an anomaly detection 
problem, 2) supervised human posture-based fall activity recognition. Five models are trained 
and evaluated based on two publicly available video datasets, composed of activities of daily 
living and simulated falls in an offi  ce-like environment. To test the models for real-world fall 
detection, we developed two new datasets, including videos of real falls in elderly people, 
and more complex backgrounds and scenarios. The experimental results show autoencoder 
detectors are able to predict falls directly from images where the background is pre-learned. 
While the pose-based approach uses foreground body pose only for AI learning, better 
targeting complex scenarios and backgrounds. Video-based methods could be a potential for 
low-cost and non-invasive falls detection, increasing safety in care environments, while also 
helping elderly people retain independence in their own homes.

How to cite this article: Qiu Y, Meng J, Li B. Automated Falls Detection Using Visual Anomaly Detection and Pose-based Approaches: 

Experimental Review and Evaluation. J Biomed Res Environ Sci. 2024 Jan 24; 5(1): 055-063. doi: 10.37871/jbres1872, Article ID: 

JBRES1872, Available at: https://www.jelsciences.com/articles/jbres1872.pdf

Introduction
The prevalence of falls in the older population has signifi cant 

implications for both individual well-being and healthcare systems. 
According to the World Health Organization (WHO), falls are the 
second leading cause of death from accidental or unintentional injuries 
worldwide, with adults aged 65 years and older being the most aff ected 
[1]. In addition to the direct physical harm caused by falls, cognitive 
and physical impairments mean elderly people may not be able to alert 
others of their fall. Even in institutionalised settings like care homes, an 
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elderly person who falls in their room at night may 
not be found until the next morning. The delay in 
raising the alarm and prompt medical treatment can 
contribute signifi cantly to morbidity and mortality 
[2]. Thus prompt recognition of falls can ensure help 
arrives sooner, as well as helping elderly people retain 
independence safely at home.

Eff orts to detect falls have historically focused 
on wearable devices [3,4]. While these solutions 
show some promise, they are not without signifi cant 
drawbacks. Traditional wearables include emergency 
alarm devices with buttons that rely on in-person 
operation, or motion sensors such as accelerometers 
and gyroscopes that can be embedded in wearable 
devices. These devices are intrusive, bulky and need 
to be carried at all times, leading to discomfort, 
fatigue or inability to wear them for prolonged 
periods. Thus user compliance, particularly for older 
people with health and cognitive problems, is a 
major problem. Battery life is another practical issue, 
with users forgetting to charge or replace batteries, 
leading to failure of fall detection. Most importantly, 
only people already identifi ed as high falls risk after 
medical assessment will likely be recommended for 
monitoring through wearable sensors.

Given these limitations, video-based fall detection 
techniques off er a non-intrusive method which can 
off er comprehensive coverage of multiple people 
without issues surrounding compliance. For example, 
they have the potential to be used in care homes to 
automatically monitor elderly people from afar. Early 
video-based activity recognition relies heavily on 
hand-crafted features and rule-based determination, 
such as the use of optical fl ow analysis, trajectory 
tracking and temporal diff erence [5]. Such methods 
are often sensitive to lighting changes, dynamic 
backgrounds and environmental conditions. They 
cannot eff ectively handle the variability in falling 
patterns and complexity in ambient background where 
multiple movements may occur simultaneously.  

The most recent and eff ective deep learning-
based techniques for activity recognition from videos 
can be classifi ed into four categories: Convolutional 
Neural Network (CNN) based systems, Long Short-
Term Memory (LSTM) based systems, autoencoder 
based systems and pose-based action recognition. 
CNNs are eff ective for fi nding patterns and shapes. 
They could address fall detection as a classifi cation 
or detection task in images. The main advantage 
of LSTMs is their capability to deal with sequential 

data, such as fall detection from wearable sensors. 
Combinations of CNN and LSTM can be used for fall 
detection from time series videos. The combined CNN 
and LSTM could better address general problems 
in visual systems such as image noise, occlusion 
and camera perspective by incorporating temporal 
information. They are used to capture spatiotemporal 
features simultaneously, which allow adaptation of 
AI learning to individuals with unique movement 
characteristics as well as relationships between 
foreground movements and complex scenes [6]. CNN 
and LSTM architectures are mostly trained through 
supervised learning. As highlighted in [6], very 
limited work was observed in abnormality detection 
for action recognition including falls.

To bridge this gap, we explore autoencoder-based 
fall detectors and pose-estimation based approaches. 
Autoencoders [7] can learn normal behaviour features 
from images directly and thus distinguish contrasting 
anomalies. They can treat fall detection as an anomaly 
detection problem, distinguishing a variety of falls 
from normal behaviours. Autoencoders are trained 
in a self-supervised manner using plenty of data, 
without requiring hand-labelled images. Posture 
estimation is a key aspect of understanding human 
motion [8]. These techniques aim to accurately 
recognise and track the position and orientation 
of the body, providing the necessary contextual 
information for fall detection algorithms. In the 
common pose estimation algorithms, the human 
body pose is described in a graphic format. This 
means using coordinates to represent the nodes of the 
body and connecting them into a form that describes 
the posture. 

A pose-based approach addresses fall detection 
as a supervised activity recognition task. The main 
advantage of the pose-based approach is that it only 
uses the extracted postures, removing the impact of 
background complexity, thus increasing fall detection 
robustness.

The eff ectiveness of visual fall detection is highly 
dependent on the quality and representativeness of 
the data used for training and evaluation. Publicly 
available datasets used to train AI models mainly 
consist of falls behaviours simulated by young people, 
due to a scarcity of data from older people, leading to 
a lack of generalisability. Thus the unique movement 
patterns, postures and behaviours associated with 
falls in older adults may not be adequately captured 
by datasets and the models trained from them.
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Contributions
1) Our research highlights the eff ectiveness of 

state-of-the-art deep learning-based methods 
for fall detection from CCTV videos. 

2) We trained and evaluated four autoencoder-
based fall detectors in a self-supervised 
manner. The autoencoders aim to reconstruct 
an input image as the network output. During 
network training, the learning algorithm 
aims to minimise the reconstruction loss. 
When performing an anomaly fall detection, 
fl uctuation of large reconstruction errors 
detects an anomalous situation.  

3) We employed a Transfer Learning (TL) 
technique in the autoencoder training process, 
and validated model performance improvement 
on more complex video scenarios of elderly 
falls. Benefi ting from pre-training on simple 
scenarios e.g. offi  ce environment and imitated 
falls, transfer learning largely reduced training 
data requirement for complex backgrounds, 
multi-people and real-world elderly falls 
which are diffi  cult to obtain.  

4) A pose estimation-based fall detector is 
built and compared with autoencoder-based 
architectures. This approach utilises extracted 
pose from key points of the body skeleton as 
input for activity recognition, eliminating 
background interference. The experimental 
results demonstrated better detection accuracy 
on elderly falls in real-world scenarios 
compared with autoencoders.    

5) We developed two real-world datasets, 
specifi cally including examples of falls in 
older adults in real-world environments. This 
approach aims to enhance the realism and 
relevance of the data used for fall detection in 
training and evaluating AI models. 

We conducted extensive evaluation on diff erent 
real-world datasets, including two datasets are 
publicly available (UR Falls detection dataset [9] 
and Multiple Camera Fall Dataset [10]), and two 
datasets generated by ourselves. The inclusion of 
falls data from diff erent environments, perspectives, 
and age groups, including the dataset created solely 
from falls of elderly people, allowed us to assess the 
generalisability and robustness of the models. The 
models we trained using our bespoke real-world 

dataset show promising results. In addition, we 
discuss the merits and limitations of the autoencoder 
and pose estimation-based approaches, suggesting 
viable future directions. 

Methodology
Two deep learning-based fall detection approaches 

are investigated, namely, the autoencoder-based 
and the pose estimation-based fall detectors. In 
particular, four autoencoder based models adapting 
from Deep AutoEncoder (DAE) [11], Convolutional 
AutoEncoder (CAE) [12], Convolutional LSTM 
AutoEncoder (ConvLSTM-AE) [13], Deep Spatio-
Temporal Convolutional AutoEncoder (DSTCAE) [14], 
and one pose-based model formed by Tiny-YOLO 
[15], AlphaPose [16] and Spatial Temporal Graph 
Convolutional Networks (ST-GCN) [17]. Autoencoder 
detectors are trained with normal Activities of Daily 
Living (ADL) and analyse the reconstruction error 
to detect anomaly falls. For the pose-based falls 
detector, the effi  cient Yolo model is utilised for human 
detection, the well-established AlphaPose is used for 
skeleton recognition, and a SpatioTemporal Graph 
Convolutional Neural network incorporating both 
spatial information from the skeleton and temporal 
movement features across frames is used for activity 
recognition.

Fall detection models

As shown in fi gure 1, an autoencoder consists of 
an encoder and decoder, each comprising multilayer 
Convolutional Neural Networks (CNNs). The encoder 
maps image input to a lower dimensional latent 
space (bottleneck), capturing salient underlying 
visual features. The decoder takes this compressed 
representation and reconstructs the original input. 
The autoencoder is trained to minimise reconstruction 
error between input image and reconstructed image, 
thus ensuring the output faithfully approximates the 
input. The model training is achieved in a manner of 
self-supervised learning without human labelling. 

The encoder maps the input x into the code as 
a compressed latent representation. The encoder 
consists of multiple layers (e.g. CNNs), performing a 
nonlinear transformation . These successive layers 
systematically reduce the dimensionality of the input. 
We defi ne this encoding process in Eq.1, h is the latent 
variables in the information bottleneck, W and b 
represent encoder weights and bias, respectively. 

 h Wx b                  (1)
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The decoder maps the latent variables h to a 
reconstruction x' of the input. The decoder is usually 
the mirror opposite ' of the encoder. Latent variables 
obtained from the encoder are re-transformed back 
to form a reconstructed output. The decoder is defi ned 
in Eq.2 with W' and b' representing the learnt weights 
and bias of the decoder, respectively.

 ' ' ’ 'x W h b          (2)

The goal of the autoencoder is to optimize the 
diff erence (namely reconstruction error) between the 
original input and the reconstructed output using a 
loss function. The mean-square-error loss is defi ned 
in Eq. 3. When performing an anomaly detection task, 
normal behaviour can be faithfully reproduced by the 
model. Whereas fl uctuations in reconstruction error 
above a threshold detects an anomalous situation 
(e.g. a fall).   

   22 ', ' '( ( )) 'x x x x x W Wx b b         '       (3)

Model 1: Deep AutoEncoder based on the sparsity 
(DAE)

Figure 2 shows the pipeline of the DAE model 
[11] for falls detection. Normal ADL videos are used 
for model training. The input video images are split 

into cubes of 10 x10 pixel patches over 5 successive 
frames. The Sparsity Value (SV) of each 10x10x5 
block is calculated based on the similarity of pixels 
between the 5 patches, representing the proportion 
of zero elements. Thus a low sparsity hints that 
pixel information is changing among frames, thus 
containing more useful information.

When the sparsity value is less than a defi ned 
threshold sv , the block is considered to be a key 
block. Consequently, nine 30 × 30 × 10 blocks around 
the key block are extracted for model learning and 
computation of Reconstruction Error (RE). The input 
is considered anomalous only if the RE value is greater 
than a specifi c threshold RE . This process of fi nding 
key points saves time cost for training.

Model 2: Convolutional AutoEncoder (CAE)

Another issue that aff ects the performance of 
autoencoder-based anomaly detection methods is that 
"meaning" is not clearly defi ned during the learning 
process of normal behaviours. Background scenes 
can be highly diverse and chaotic, making it diffi  cult 
to extract anomalous visual behaviour features from 
videos. The CAE model [12] addresses this by learning 
temporal regularities and detecting objects associated 
with irregular motion, incorporating past and future 

Figure 1 Autoencoder-based image reconstruction for anomaly detection.

Figure 2 Pipeline of Model 1-DAE.
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frames. Model 2-CAE learns motion features end-
to-end by stacking sliding windows as a model input. 
The encoder consists of three convolutional layers 
and two pooling layers. The decoder consists of three 
inverse convolutional layers and two inverse pooling 
(upsampling) layers.

Model 3: Convolutional LSTM AutoEncoder 
(ConvLSTM-AE)

Long Short-Term Memory (LSTM) structure is 
employed to learn the temporal evolution of spatial 
features, extracted from several convolutional layers. 
This hybrid spatiotemporal architecture of LSTM and 
CNN is benefi cial for effi  cient anomaly detection in 
time series data [13].

Model 4: Deep Spatio-Temporal Convolutional 
AutoEncoder (DSTCAE)

A deep spatio-temporal convolutional 
autoencoder employing 3D CNNs is used to learn 
spatial and temporal features [14]. A new anomaly 
scoring method that combines the reconstruction 
score of frames across a temporal window is also used 
to detect falls.

Model 5: Pose-based  fall detector

Pose-based fall detection involves a combination 
of human detection, pose estimation and activity 
recognition, as summarised in fi gure 3. To achieve 
this, Tiny-YOLO [15] is used to detect the human 
body bounding box in images. The state-of-the-
art AlphaPose [16] is then employed to calculate 
the location the key points (joints) of the human 

body, thus determining the spatial confi gurations 
of body poses. Finally, the Spatio-Temporal Graph 
Convolutional Network ST-GCN [17] combines the 
body position, joints and pose structure information 
to achieve action recognition. The ST-GCN calculates 
the probability that a frame fi ts each of 7 activities 
(standing, walking, sitting, lying down, standing up, 
sitting down, fall down), with the highest probability 
activity as its output.

Fall datasets

Four main datasets were used to train and evaluate 
the above fi ve falls detection techniques, as shown 
in table 1. Two datasets are publicly available (UR 
Falls detection dataset [9] and Multiple Camera Fall 
Dataset [10]). A downside of these datasets is that 
they remain in the same scenario of offi  ce and imitate 
the fall of middle-aged people. To increase the real-
world applicability of the models, we created two 
additional datasets, the Self-recorded Dataset and 
YouTube collected Dataset, to consider diff erent age 
groups, environments, camera angles and number of 
people. 

Offi  ce-1 - UR Fall Detection Dataset: The UR Falls 
dataset comprises 40 videos of middle-aged adults 
simulating ADLs (e.g. walking, sitting, squatting, 
standing), and an additional 30 videos of middle-
aged adults simulating falls. The camera position and 
room remain the same in each video, remaining at the 
level of a person (i.e. in-plane view). Only one person 
ever appears in each video. 

Offi  ce-2 - Multiple Cameras Fall Dataset: In the 

Figure 3 Pipeline for the pose-based fall detector.

Table 1: Summary of characteristics of falls datasets.

Dataset
Video 

number
In-plane 

view
CCTV-

like view
Multiple people

Multiple 
environments

Video 
quality

Fall behavior

1 UR Fall Detection Dataset(Offi  ce-1)[9]
40 ADLs
30 Falls

Y Same Imitation

2
Multiple Cameras Fall 
Dataset(Offi  ce-2)[10]

176 ADLs
16 Falls

Y Y Same Imitation

3 Self-recorded Dataset(Dormitory) 10 Falls Y Y Same Imitation

4 YouTube collected Dataset(Elderly) 9 Falls Y Y Y Y Varied
Real falls in 

elderly
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Multiple Camera Falls dataset, there are 176 videos 
containing varying numbers of people, simulating 
ADLs by middle-aged adults. An additional 16 videos 
are of middle-aged adults simulating falls. The 
camera is at an overhead angle, akin to CCTV, the 
recordings are of a single offi  ce room from 8 camera 
angles.

Dormitory - Self-recorded Dataset: We recorded 
this dataset in varying environments (e.g. diff erent 
corridors and rooms in the dormitory) and shows a 
younger person simulating falls in 10 videos.

Elderly - YouTube collected Dataset: The second 
new dataset is the Elderly Dataset, which is comprised 
of videos sourced from YouTube of real recorded falls 
in elderly people. This dataset is the most realistic, as 
it shows real falls (all 3 other datasets have simulated 
falls), a range of environments, and camera angles, 
multiple people may be in the frame (or only one). 
The video quality is also varied between sequences, 
refl ecting real-world diff erences in video recordings.  

In the UR Fall Detection Dataset, fall events are 
already labelled with the exact time and frame at 
which the fall events start and end. Thus for the other 
three datasets, the timing of the start and end of fall 
events was added through manual labelling.  

Evaluation matrix

The start time and end time for fall events, either 
pre-included in public datasets or added by us, were 
used as ground truth, indicating each frame’s label as 
fall or not fall. The autoencoder-based fall detectors 
determine falls if the anomaly value exceeds a certain 
threshold. Therefore we can obtain the Receiver 
Operating Characteristic (ROC) curve of false positive 
vs. true positive at varying anomaly threshold values. 
The Area Under Curve (AUC) for ROC is therefore 
obtained as an accuracy value for each model which 
can be compared.

Results and Discussion 
For the four autoencoder-based models, we used 

the 40 ADLs in the Offi  ce-1 dataset for model training 
(20 epochs). The four generated fall detectors are 
tested on the 30 fall videos from the Offi  ce-1 Dataset, 
with table 2 showing the comparative results. The 
best performing model was model 4 – DSTCAE using 
deep 3D CNNs, achieving 83% AUC accuracy.

Figure 4 shows an example of successful fall 
detection by Model 1: DAE on a fall video from 

Offi  ce-1 dataset. The video starts with an empty 
room, into which a person enters and subsequently 
has a fall, remaining on the ground after the fall. We 
observe in the fi rst frame that the background of the 
reconstructed image is not the same as the original, 
explaining the consistently low level of anomaly value 
throughout the video. When the person in the video 
performs some normal ADLs, the anomaly score 
remains steady with minimal fl uctuations. When 
the falls event occurs, the anomaly value starts to 
fl uctuate and reaches a high peak value. The anomaly 
value then falls back to its baseline once the fall event 
is over. This highlights the temporal relationship 
that is being used by the model to detect falls events, 
beyond just analysing the spatial appearance of each 
individual frame on its own.

Figure 4 Successful fall detection using Model 1-DAE tested on 
a fall video sequence in Offi  ce-1. Four frames in the video are 
shown. For each frame, top left is the original image, top right is the 
reconstructed image, bottom is the anomaly score. The green dot 
indicates the time of the corresponding frame, and the green bar 
denotes the ground truth of fall period.

Table 2: Area under the ROC Curve (AUC) comparison of the four 
autoencoder-based models training on ADLs and testing on falls in 
the Offi  ce-1 dataset.

Model AUC

Model 1: DAE 62%

Model 2: CAE 71%

Model 3: ConvLSTM-AE 80%

Model 4: DSTCAE 83%
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Model 2 also performs well when tested on the 
Offi  ce-1 falls dataset. However, when we evaluate 
the generalisation of Model 1 and Model 2 (trained on 
Offi  ce-1 dataset) using the quite diff erent Dormitory 
dataset, they both perform poorly on the Dormitory 
dataset. An example is shown in fi gure 5, where Model 
1 fails to predict the fall, and Model 2 showed incorrect 
false peaking after predicting a fall (Figure 6).

This can be explained by anomaly detection 
relying heavily on the model's video reconstruction 
capability rather than the recognition of falls. Figure 
7 shows Model2-CAE reconstructing the video of the 
Offi  ce-1 dataset much better for the background than 
Model1-DAE, resulting in lower absolute anomaly 
values. Of note, when the Dormitory dataset is used 
for testing, it has a diff erent environment from the 
training set. Model-1-DAE still reconstructs the 
background similar to the training set, which directly 
leads to the fact that the model does not detect the 
fall, but rather considers the background to be more 
similar to the original video when the people fall and 
the lowest anomaly score peak appears.  

We then tested the generalisability of Model 
3-ConvLSTM-AE and Model4-DSTCAE (trained on 
Offi  ce-1 ADLs) on all four datasets, as shown in table 
3. Both models achieved an average AUC accuracy of 
around 80% on the two offi  ce datasets. An example of 

multi-falls detection by Model 3 on Offi  ce-2 is shown 
in fi gure 6A. In addition, the two models also perform 
well on the Dormitory dataset, reaching respectively 
71% and 76%, and a representative example is shown 
in fi gure 6C.

However, Models 3 and 4 struggled when applied 
to the more realistic Elderly dataset, only achieving 
57% and 60% respectively. To improve detection 
accuracy, we leverage transfer learning technology. 
Model 3-ConvLSTM-AE was fi rstly pre-trained on the 
Offi  ce-1 dataset of 40 ADLs, then it was continually 
trained and fi ne-tuned on the Offi  ce-2 dataset with 
an additional 10 ADL videos. The Offi  ce-2 dataset 
includes more examples of diff erent scenarios, 

Figure 5 Top: Model 1 (left) and Model 2 (right) tested on Offi  ce-1, 
both good performance.

Bottom: Model 1 (left) and Model 2 (right) tested on Dormitory, 
showing degraded performance.

Figure 6 A) Model 3-ConvLSTM-AE on Offi  ce-2 showing good multi-
fall detection. 

B) Model 3 failing to detect in Elderly dataset. 

C) Model 4-DSTCAE successful detection in Dormitory example. 

D) Model 4 failing to detect in Elderly.

Table 3: AUC comparison of Model3-ConvLSTM-AE and Model 4- 
DSTCAE training and testing on four datasets.

Training
Dataset

Test Dataset
Model 3: 

ConvLSTM-AE
(AUC )

Model 4: 
DSTCAE (AUC )

Offi  ce-1
40 ADLs

Offi  ce-1: 30 falls 80 % 83%

Offi  ce-2: 16 falls 78% 80%
Dormitory: 10 

falls
71% 76%

Elderly: 9 falls 57% 60%
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angles and numbers of people. Through this transfer 
learning, Model-3 gained an improved detection 
accuracy of 3% on the Elderly dataset. We would 
argue that transfer learning on larger representative 
datasets will further improve model performance 
signifi cantly. 

Figures 6B,D show where the Models 3 and 4 fail 
to detect in a not-so-complex real-life hospital and 
care home scenario respectively. This demonstrates 
a limitation of anomaly detection, where the 
model must learn as much normal appearances of 
both foreground human activity and background 
environment as possible, in order to distinguish 
anomalies. In actuality, model complexity is 
inherently constrained in order to achieve processing 
speeds required for real-time monitoring. Such 
constrained AI models would struggle to learn the 
diversity of activities, video angles, and background 
environments from varying video qualities.

For the above challenges, pose estimation is a 
potential solution. Model 5 Pose-based detector is 
generated using 5 fall videos from Offi  ce-1 dataset. 
First, Tiny-YOLO was applied to detect the human 
bounding box, shown as a green box in fi gure 7. Next, 
AlphaPose was used to detect skeleton and key points. 
Finally, the sequential skeleton data was used as input 
of ST-GCN and each frame was given a ground truth 
label for fall or not, through supervised learning.

The model calculates the percentage confi dence of 
the pose fi tting each of seven activities, and outputs 
the highest confi dence activity as recognition result. 
Figure 7 shows some sample results across all 4 
datasets, where the recognition result accompanied 
by percentage confi dence is displayed next to the 
bounding box. We note that in fi gure 6D, we get the 
best detection results for the real-world elderly fall 
video, which fails in all anomaly detection approaches 
using autoencoder-based (Figure 6B).

Conclusion
We present fi ve deep learning-based models to 

detect falls from video images. We trained the models 
and evaluated their performance over two publicly 
available datasets and two self-developed datasets. 
Our two new datasets increased the challenge by 
encompassing varying and complex backgrounds, 
camera angles and real-life falls in elderly people. 
Our results showed that while the autoencoder-
based models may work on well-trained background 

Figure 7 Examples of successful fall detection using Model-5 Pose-
based detector on all four datasets.

scenarios, they generally performed worse on more 
dynamic and challenging backgrounds as presented 
in our two new datasets. Model 4 – DSTCAE which 
employs deep 3D CNNs outperformed the other three 
autoencoder-based models with an AUC accuracy of 
60% on the most challenging Elderly dataset. The 
pose-based detector was able to detect falls when 
autoencoder-based methods failed.

We note that as autoencoder models are trained on 
ADLs, many “normal” behaviours not present in the 
training dataset could be recognised as anomalous. 
This major drawback inherently requires larger 
datasets to cover a greater range of “normal” human 
behaviours. In essence, it is defi ning falls by learning 
through “exclusion”. They usually perform well 
in scenarios similar to training data, however they 
would struggle to reconstruct images (background 
and foreground) in transformed diff erent scenarios. 
In contrast, a posture-based detector learns by 
“inclusion” - trained specifi cally on fall data to 
eff ectively recognise a fall. It is thus less likely to be 
confounded by previously unseen normal human 
behaviours. Thus they require less training data than 
autoencoder-based models while also potentially 
being more accurate. However, this comes with 
increased computational cost associated with pose 
estimation. 

For future research and development of visual fall 
detection, eff orts would focus on system robustness 
and real-time performance for complex real-world 
scenarios, e.g. occlusion, lighting and presence 
of multiple people, in both indoor and outdoor 
environments. For the deployment of a camera-
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based fall detection system, privacy should also 
be considered. To this end, thermal and infrared 
cameras could be a potential option. Edge computing 
and embedded systems, which allow the processing of 
data on board, will also reduce related security issues. 

There is not yet a comprehensive benchmark 
dataset for a systematical evaluation of fall detection 
algorithms. This presents a hurdle in advancing the 
current research and technology for healthcare. 
Nearly all published datasets use middle-aged 
subjects to simulate falls, while there are signifi cant 
diff erences in falls between the elderly, middle-aged 
subjects and children. Rather than merely focusing 
on elderly people, falls of children, “accidental” and 
“non-accidental” falls should be studied to cover a 
wide scope. 
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