BIBLIOGRAPHIC INFORMATION SYSTEM

Journal Full Title: Journal of Biomedical Research & Environmental Sciences

Journal NLM Abbreviation: J Biomed Res Environ Sci

Journal Website Link: https://www.jelsciences.com

Journal ISSN: 2766-2276

Category: Multidisciplinary

Subject Areas: Medicine Group, Biology Group, General, Environmental Sciences

Topics Summation: 128
Issue Regularity: Monthly

Review Process type: Double Blind

Time to Publication: 7-14 Days
Indexing catalog: Visit here

Publication fee catalog: Visit here

DOI: 10.37871 (CrossRef)

Plagiarism detection software: iThenticate

Managing entity: USA

Language: English

Research work collecting capability: Worldwide

search work conecting capability. Worldw

Organized by: SciRes Literature LLC

License: Open Access by Journal of Biomedical Research & Environmental Sciences is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at SciRes Literature LLC.

Manuscript should be submitted in Word Document (.doc or .docx) through

Online Submission

form or can be mailed to support@jelsciences.com

• advisation for defining the first state of the fi

👽 Vision: Journal of Biomedical Research & Environmental Sciences main aim is to enhance the importance of science and technology to the scientific community and also to provide an equal opportunity to seek and share ideas to all our researchers and scientists without any barriers to develop their career and helping in their development of discovering the world.

REVIEW ARTICLE

The Art of Psychoneuroimmunology in Menopause Management

Dito Anurogo*

Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taiwan

Abstract

Psychoneuroimmunology is a field that explores the intricate connections between the mind, brain, and immune system. This narrative review integrates various aspects of psychoneuroimmunology in the context of menopause. It highlights the hormonal changes during menopause, their impact on psychological well-being and the immune system, as well as the psychological aspects of menopause such as emotional changes, cognitive functioning, and sleep disturbances. The immunological changes during menopause, including alterations in immune cell function and cytokine production, are discussed along with their influence on psychological well-being. This comprehensive review emphasizes the bidirectional communication between the brain and immune system, the effects of hormonal, psychological, and immunological factors on each other, and the role of chronic inflammation in menopause-related psychological symptoms. Additionally, it explores the influence of psychosocial factors like stress and social support on menopausal symptoms, and presents various psychoneuroimmunology interventions such as mind-body techniques, pharmacological options, and lifestyle modifications. The importance of integrating psychoneuroimmunology approaches in menopause research, potential areas for further investigation, and the call for comprehensive strategies to improve menopausal care are also highlighted, underscoring the significance of this interdisciplinary field in understanding and enhancing menopausal health and well-being.

Introduction

Definition and overview of psychoneuroimmunology

Psychoneuroimmunology (PNI) is a multidisciplinary field that investigates the interactions between the Central Nervous System (CNS), the immune system, and psychological processes. It explores how psychological factors, such as emotions, thoughts, and behaviors, can influence the functioning of the immune system and, in turn, impact physical health and well-being [1].

Introduction to menopause and its psychological and immunological implications

Menopause is a natural biological process that occurs in women typically between the ages of 45 and 55, marking the end of reproductive capability. It involves a significant hormonal transition, with a decline in estrogen and progesterone levels. This hormonal shift during menopause can have psychological implications, including mood disturbances, cognitive changes, and sleep disturbances. Furthermore, menopause also

*Corresponding author(s)

Dito Anurogo, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia

Email: dito.anurogo@med.unismuh.ac.id; d151109004@tmu.edu.tw

DOI: 10.37871/jbres1758 **Submitted**: 24 May 2023

Accepted: 09 June 2023

Published: 10 June 2023

Copyright: © 2023 Anurogo D. Distributed under Creative Commons CC-BY 4.0 **⊙①**

OPEN ACCESS

Keywords

- Psychoneuroimmunology
- Menopause
- Management

MEDICINE GROUP

WOMENS HEALTH AND CARE GYNECOLOGY

MENTAL HEALTH

VOLUME: 4 ISSUE: 6 - JUNE, 2023

affects the immune system, resulting in alterations in immune function and increased susceptibility to certain health conditions [2].

Menopause is a natural process that happens in every woman's life and is associated with various physical and psychological symptoms. One common symptom is hot flashes, which are sudden sensations of heat that can cause sweating and discomfort. Hot flashes are experienced by a significant number of women, with rates ranging from 20% to 80% of menopausal individuals [3–5].

Moreover, menopause, which refers to the cessation of menstrual periods in women, is associated with various signs and symptoms. These include disorders related to the central nervous system (such as mood swings and difficulty concentrating), changes in metabolism, weight fluctuations, alterations in cardiovascular health, musculoskeletal issues (such as joint pain), urogenital problems (such as vaginal dryness and urinary incontinence), skin thinning and dryness, as well as sexual dysfunction. The underlying physiological mechanisms responsible for these manifestations are being understood as intricate and multifaceted, involving factors beyond the decline in estrogen levels, although estrogen deprivation plays a significant role [6].

Significance of studying psychoneuroimmunology in menopause

Studying the psychoneuroimmunology menopause is of great importance for several reasons. First, understanding the complex interplay between psychological, neurological, and immunological factors can provide valuable insights into the underlying mechanisms contributing to the physical and psychological symptoms experienced during menopause. Second, it can help identify potential therapeutic targets and interventions that can alleviate menopausal symptoms and improve overall well-being. Lastly, investigating psychoneuroimmunology of menopause contributes to our broader understanding of the mind-body connection and the intricate relationship between psychological and physiological processes.

By examining the psychoneuroimmunological aspects of menopause, researchers can gain a more comprehensive understanding of the impact of menopause on women's health and develop evidence-based interventions that target the interplay between psychological, neurological, and immunological

factors. This knowledge can ultimately lead to improved care and support for women going through the menopausal transition.

Hormonal Changes during Menopause

Before we discuss about menopause, it should be better if we comprehend about the normal menstrual cycle at a glance. The menstrual cycle consists of three phases: follicular, periovulatory, and luteal, regulated by hormones and feedback mechanisms involving the ovaries, pituitary gland, and hypothalamus. During the follicular phase, estrogen and progesterone levels are low, leading to the release of Follicle-Stimulating Hormone (FSH) and follicular maturation. The periovulatory phase involves a surge in Luteinizing Hormone (LH) and the release of the egg. The luteal phase follows with increased progesterone production. If fertilization does not occur, hormone levels decrease, causing the breakdown of the corpus luteum. The dominant follicle and corpus luteum are the main sources of estrogen, while granulosa and theca cells play a key role in steroid production. Positive and negative feedback loops involving estrogen and progesterone control hormone levels during the cycle [7].

Overview of menopause and its hormonal changes

Menopause is characterized by the cessation of menstrual cycles and the decline in ovarian function, leading to significant hormonal changes. The primary hormones affected during menopause are estrogen and progesterone. Estrogen levels decrease, and progesterone levels become more irregular. These hormonal changes are responsible for various physiological and psychological changes experienced during this transitional phase.

Impact of hormonal changes on psychological well-being

The hormonal fluctuations during menopause can have a profound impact on psychological well-being. Estrogen, in particular, plays a crucial role in regulating neurotransmitters, including serotonin and dopamine, which are involved in mood regulation. The decline in estrogen levels can lead to mood disturbances, such as irritability, anxiety, and depression [8]. Additionally, hormonal changes can contribute to cognitive symptoms, including memory lapses and difficulty concentrating. These psychological changes can significantly impact a

woman's quality of life and overall psychological well-being during menopause [9].

Influence of hormonal changes on the immune system

Hormonal changes during menopause also have implications for the immune system [10]. Estrogen has immunomodulatory effects, influencing immune cell function and cytokine production. The decline in estrogen levels during menopause can result in alterations in immune cell activity and a shift in the balance of pro-inflammatory and anti-inflammatory cytokines [11]. These changes may contribute to increased susceptibility to certain immune-related conditions and potentially impact overall immune function.

The relationship between hormonal changes, psychological well-being, and immune system function during menopause is complex and interconnected. Hormonal fluctuations can directly affect neurotransmitter systems involved in mood regulation, while also influencing immune system activity. These interconnected effects may contribute to the psychological symptoms and immune-related changes experienced by women during menopause [12].

Understanding the interplay between hormonal changes, psychological well-being, and immune system function during menopause is crucial for developing targeted interventions to alleviate symptoms and improve overall health well-being. By comprehensively studying the psychoneuroimmunology of menopause, researchers can gain insights into the underlying mechanisms and identify potential therapeutic strategies for mitigating the impact of menopause on both psychological and immune-related aspects of women's health [13].

Psychological Aspects of Menopause

Emotional and mood changes

Menopause is associated with various emotional and mood changes, which can significantly impact a woman's psychological well-being. Two key psychological aspects during menopause are anxiety and depression, as well as irritability and mood swings [14].

Anxiety and depression: During menopause, women may experience an increased risk of anxiety and depression. Fluctuations in hormone levels, particularly estrogen, can influence neurotransmitter systems involved in mood regulation. Estrogen helps modulate serotonin, a neurotransmitter associated with feelings of well-being and happiness [15]. As estrogen levels decline, serotonin levels may also be affected, leading to an increased susceptibility to anxiety and depression symptoms. Additionally, factors such as hormonal changes, physical discomfort, sleep disturbances, and life transitions associated with menopause can contribute to psychological distress [16].

Anxiety symptoms commonly experienced during menopause include excessive worrying, restlessness, irritability, and feelings of tension. Women may also experience panic attacks characterized by sudden and intense periods of fear or discomfort. Depression symptoms may include persistent feelings of sadness, loss of interest or pleasure in activities, changes in appetite and sleep patterns, fatigue, and difficulty concentrating. It is important to note that while hormonal changes play a role, psychological and social factors also contribute to the development of anxiety and depression during menopause [17].

Psychological distress: Numerous menopausal women experience psychological distress, which manifests as feelings of agitation, anxiety, or overload. This distress is frequently associated with other menopausal symptoms such as hot flashes, fatigue, and weight changes (such as acquiring weight or becoming obese). In addition to physical symptoms such as hot flashes, psychological symptoms can contribute to negative emotions and attitudes regarding menopause. Consequently, it is crucial to develop strategies that specifically target psychological distress during menopause. These strategies could assist women in adjusting to the changes they are experiencing and enhance their mental health. It is possible to support women during this midlife transition and promote improved mental health among menopausal women by targeting and managing psychological distress [18].

Irritability and mood swings: Irritability and mood swings are also common psychological aspects of menopause. Fluctuating hormone levels can influence brain chemistry and contribute to changes in emotional regulation. Women may experience heightened irritability, becoming more easily agitated or frustrated in response to daily stressors. Mood swings may involve rapid and intense shifts in emotions, such as going from feeling content to suddenly feeling sad or irritable [19].

It is essential to recognize that the psychological aspects of menopause can vary widely among women, and not all women will experience the same symptoms or severity. Individual differences in hormonal profiles, genetics, personal experiences, and psychosocial factors all contribute to the diversity of psychological experiences during menopause.

Understanding and addressing the psychological aspects of menopause, including anxiety, depression, irritability, and mood swings, is crucial for promoting overall well-being during this life stage. Integrated approaches that consider hormonal, psychological, and social factors can help develop effective interventions and support systems to enhance mental health and quality of life for women experiencing menopause.

Cognitive functioning

Menopause can have notable effects on cognitive functioning, including memory and concentration, as well as potential cognitive decline. These changes in cognitive abilities can impact a woman's daily functioning and overall well-being [20].

Memory and concentration: During menopause, some women may experience changes in memory and concentration abilities. Hormonal fluctuations, particularly the decline in estrogen levels, can influence cognitive processes. Estrogen has neuroprotective effects and plays a role in maintaining optimal brain function, including memory formation and retrieval. Reduced estrogen levels during menopause can contribute to difficulties with memory, including forgetfulness, occasional lapses in recall, and problems with word retrieval. These memory changes may be more noticeable during times of stress or fatigue.

Concentration and attention may also be affected during menopause. Women may find it more challenging to focus on tasks, maintain attention for extended periods, or multitask effectively. The hormonal changes and accompanying symptoms, such as hot flashes, sleep disturbances, and mood fluctuations, can contribute to difficulties with concentration and attentional control.

Cognitive decline: While cognitive changes during menopause are common, it is important to differentiate between typical age-related cognitive changes and cognitive decline associated with menopause. While some women may experience subtle cognitive changes, menopause itself is not considered a direct cause of dementia or significant cognitive decline. Age-related factors, genetic predisposition, and other medical conditions play a more prominent role in cognitive decline.

However, it is essential to note that some women may be at an increased risk of cognitive decline during menopause if they have specific risk factors, such as a history of depression, cardiovascular disease, or certain genetic factors. It is crucial for healthcare professionals to evaluate cognitive changes in menopausal women thoroughly, considering potential contributing factors beyond menopause itself [21].

Several factors that may increase the risk of cognitive decline during menopause include:

- Hormonal changes: During menopause, the levels of hormones such as estrogen and progesterone decrease significantly. Some studies suggest that estrogen may have a protective effect on brain health, and its decline could therefore contribute to cognitive issues [21,22].
- Age: Older age is a risk factor for many forms of cognitive decline and dementia. As menopause usually occurs as a woman ages, the risk of cognitive issues increases [23,24].
- Genetics: Women with a family history of cognitive disorders or dementia may be at higher risk [25,26].
- Poor cardiovascular health: Factors like high blood pressure, high cholesterol, obesity, and diabetes can affect brain health and cognitive function [27,28].
- Lifestyle factors: Unhealthy habits, such as smoking, excessive alcohol consumption, lack of physical activity, and poor diet can also contribute to cognitive decline [29-31].
- Mental health issues: Depression, anxiety, and high stress levels can potentially impact cognitive function [32-34].
- Sleep disturbances: Many women experience sleep problems during menopause, which can impact cognitive function. Sleep is important for cognitive health, and chronic sleep disturbances have been linked to an increased risk of cognitive decline [35,36].

Lower educational level: Some research has suggested that a lower level of education may be associated with a higher risk of cognitive decline and dementia [37,38].

Moreover, molecular biology and genetics research have shed light on several factors that might increase the risk of cognitive decline during menopause. Here are some key molecular biological factors:

- 1. Apolipoprotein E (APOE) gene: This gene has been identified as a significant genetic risk factor for late-onset Alzheimer's disease, the most common form of dementia. The APOE ϵ 4 allele, in particular, increases risk. Some research suggests this risk may be higher in women, especially after menopause, possibly due to interactions between the APOE ε4 allele and declining estrogen levels [39-41].
- 2. Estrogen receptor polymorphisms: Variations in the genes that code for Estrogen Receptors (ERs) might impact how a woman's brain responds to decreasing estrogen levels during menopause. Some polymorphisms have been associated with an increased risk of cognitive decline and Alzheimer's disease [42-44].
- 3. Brain-Derived Neurotrophic Factor (BDNF) gene: BDNF is a protein that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses [45,46]. Variations in the BDNF gene can affect the production or function of this protein, potentially influencing cognitive function during menopause [47].
- 4. Inflammatory markers: Chronic inflammation is thought to contribute to the pathogenesis of Alzheimer's disease and other forms of dementia. Inflammatory markers, such as C-Reactive Protein (CRP) and Interleukins (ILs), may increase during menopause and could potentially contribute to cognitive decline [48-51].
- 5. Tau and beta-amyloid proteins: These proteins, when they accumulate in the brain, form the hallmark plaques and tangles seen in Alzheimer's disease [52,53]. There is some evidence that menopause might accelerate the accumulation of these proteins, potentially due to the loss of estrogen's neuroprotective effects.

These factors interact with other individual, lifestyle, and environmental factors, complicating the picture of risk. Furthermore, while these molecular biological factors may help us understand who is at greater risk for cognitive decline during menopause, they do not guarantee that cognitive decline will occur [54]. More research is needed to understand these complex relationships and to develop strategies for prevention and treatment.

It is worth noting that not all women will experience cognitive changes during menopause, and those who do may have varying degrees of severity. Lifestyle factors such as regular exercise, a healthy diet, mental stimulation, and managing overall health can help support cognitive function during menopause [23].

Understanding the cognitive aspects of menopause and distinguishing between typical age-related changes and potential cognitive decline is important for accurate assessment and appropriate support. Healthcare providers can offer strategies to manage cognitive changes, such as memory techniques, cognitive exercises, and lifestyle modifications, to optimize cognitive functioning and promote overall well-being during this transitional phase.

Sleep disturbances and fatigue

Sleep disturbances and fatigue are common psychological aspects of menopause, which can significantly impact a woman's overall psychological well-being.

Insomnia and sleep disorders: Menopause is often associated with an increased risk of insomnia and other sleep disorders [55]. Hormonal fluctuations, specifically the decline in estrogen levels, can disrupt the sleep-wake cycle and lead to difficulties falling asleep, staying asleep, and experiencing restful sleep [56]. Women may report symptoms of insomnia, such as difficulty initiating or maintaining sleep, early morning awakenings, or non-restorative sleep. Other sleep disorders commonly experienced during menopause include sleep apnea, restless leg syndrome, and periodic limb movement disorder [57].

The interplay between hormonal changes, hot flashes, night sweats, and psychological factors, such as stress, anxiety, and mood disturbances, can further contribute to sleep disturbances during menopause. Sleep disturbances can have a significant impact on a woman's quality of life, daytime functioning, and overall psychological well-being.

Impact of sleep disturbances on psychological well-being: Sleep disturbances during menopause can have detrimental effects on psychological well-being. Insufficient or poor-quality sleep can lead to daytime fatigue, irritability, mood swings, difficulties with concentration and memory, and decreased overall cognitive functioning. Sleep deprivation can exacerbate feelings of anxiety and depression, as well as impair emotional regulation, leading to heightened emotional reactivity and reduced resilience to stressors [57].

Additionally, sleep disturbances can create a cycle of negative effects, where poor sleep quality contributes to increased psychological distress, and in turn, psychological distress can further disrupt sleep. The resulting sleep deprivation and impaired psychological well-being can significantly impact a woman's overall quality of life and functioning [55].

Addressing sleep disturbances during menopause is crucial for maintaining psychological wellbeing. A multidimensional approach that addresses hormonal factors, sleep hygiene practices, and psychological factors can be beneficial. Hormone replacement therapy, relaxation techniques, Cognitive-Behavioral Therapy for Insomnia (CBT-I), and lifestyle modifications, such as regular exercise, maintaining a consistent sleep schedule, and creating a conducive sleep environment, may help alleviate sleep disturbances and improve overall psychological well-being [58].

Understanding the relationship between sleep disturbances, psychological well-being, and menopause is essential for healthcare professionals to provide comprehensive care and support to women experiencing these challenges. By addressing sleep disturbances effectively, healthcare providers can help enhance women's psychological well-being and overall quality of life during the menopausal transition [59].

Immunological Changes during Menopause

Overview of the immune system

The immune system plays a critical role in defending the body against pathogens, maintaining homeostasis, and promoting overall health. It consists of a complex network of cells, tissues, and molecules that work together to recognize and eliminate foreign invaders, such as bacteria and viruses, while also

regulating immune responses to prevent excessive inflammation.

Impact of menopause on immune function

Menopause is associated with various changes in immune function, which can affect the body's ability to respond to pathogens and maintain immune homeostasis.

Alterations in immune cell function

During menopause, alterations in immune cell function can occur. Natural Killer (NK) cells, which are important in recognizing and eliminating infected or cancerous cells, may exhibit reduced activity. This decline in NK cell function can contribute to an increased susceptibility to viral infections and impaired immune surveillance against tumor cells. Additionally, changes in T cell function and a decline in their diversity and responsiveness have been observed during menopause. These alterations in immune cell function can affect the overall immune response and increase the risk of immune-related disorders [60].

After menopause, which is the stage when a woman's menstrual periods stop, there are certain changes that occur in the body. One of these changes is an increase in substances in the blood called proinflammatory markers (such as IL1, IL6, TNF-alpha), which can trigger inflammation in the body. The immune cells in the blood become more responsive to these markers, which means they react more strongly to them. Another change is a decrease in certain types of white blood cells called CD4 T and B lymphocytes, which are important for the immune system. Additionally, the activity of Natural Killer (NK) cells, which are responsible for killing harmful cells in the body, becomes less effective. Moreover, a substance called IL-6, which is produced in the body, plays a role in the breakdown of bones and is also linked to other health conditions that are more common after menopause, such as diabetes, atherosclerosis (hardening of the arteries), and cardiovascular disease [61].

Changes in cytokine production

Menopause is also associated with changes in cytokine production, which are signaling molecules involved in immune regulation and inflammation [62]. Estrogen plays a role in modulating cytokine production, and the decline in estrogen levels during menopause can result in alterations in cytokine

profiles [63]. This may lead to a shift towards a pro-inflammatory state, characterized by increased production of inflammatory cytokines. Chronic low-grade inflammation associated with menopause has been implicated in the development of various age-related diseases and may contribute to the onset or exacerbation of certain conditions, such as cardiovascular disease, osteoporosis, and mood disorders.

Autoimmune disorders and menopause

Menopause is a period of increased vulnerability to autoimmune disorders. The decline in estrogen levels can influence the immune system's balance and tolerance, potentially leading to the development or exacerbation of autoimmune conditions. Estrogen has been shown to have immunomodulatory effects, including regulating the function of immune cells and suppressing autoimmune responses. The hormonal changes during menopause may disrupt this balance, contributing to an increased risk of autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis.

Influence of immunological changes or psychological well-being

The immunological changes during menopause can have implications for psychological well-being. Inflammation, as a result of altered immune function, has been linked to the development of mood disorders, such as depression and anxiety. The increased proinflammatory state associated with menopause may contribute to the onset or worsening of psychological symptoms. Inflammatory cytokines can affect neurotransmitter metabolism, neuroendocrine function, and neuroplasticity, influencing mood regulation, stress responses, and cognitive function.

Understanding the influence of immunological changes on psychological well-being during menopause is essential for a comprehensive understanding of women's health. The interplay between immune function, hormonal changes, and psychological factors can contribute to the development of psychological symptoms during menopause [18]. Integrating the principles of psychoneuroimmunology can help elucidate the mechanisms underlying the relationship between immunological changes and psychological wellbeing, paving the way for targeted interventions that address both the immune and psychological aspects of menopause.

Psychoneuroimmunological Interactions in Menopause

Bidirectional communication between the brain and immune system

Psychoneuroimmunology explores the bidirectional communication between the brain and immune system, highlighting their intricate relationship [64]. The brain and immune system communicate through various pathways, including neural, endocrine, and immune signaling [65]. This bidirectional communication allows for coordinated responses to physiological and psychological challenges.

During menopause, hormonal changes, such as the decline in estrogen levels, can influence this communication. Estrogen receptors are present in both immune cells and the brain, allowing estrogen to modulate immune responses and affect brain function [66]. In turn, immune signals can impact brain activity, affecting emotions, cognition, and behavior. This bidirectional communication between the brain and immune system during menopause plays a crucial role in shaping the overall response to physiological and psychological stressors.

Effects of hormonal, psychological, and immunological factors on each other

Hormonal, psychological, and immunological factors in menopause can interact and influence each other. Hormonal changes, such as the decline in estrogen levels, can affect psychological well-being and immune function [67]. Psychological factors, such as stress, anxiety, and mood disturbances, can modulate hormonal and immune responses. Immunological changes, such as altered cytokine profiles and immune cell function, can impact hormonal regulation and psychological processes.

For example, stress can activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, leading to the release of stress hormones that can influence both immune and psychological responses. Chronic stress can dysregulate the HPA axis, affecting hormonal balance and immune function, potentially leading to increased inflammation and psychological symptoms. Furthermore, inflammation associated with immunological changes during menopause can influence hormone production and metabolism, hormonal imbalances contributing to psychological symptoms.

Role of chronic inflammation in menopauserelated psychological symptoms

Chronic inflammation has emerged as a significant factor in menopause – related psychological symptoms. Immunological changes during menopause, such as increased pro-inflammatory cytokine production, can contribute to chronic low-grade inflammation. This inflammation can impact the brain through multiple mechanisms, including the activation of inflammatory signaling pathways and the disruption of neurotransmitter metabolism.

Chronic inflammation has been associated with the development or exacerbation of psychological symptoms, including depression, anxiety, and cognitive impairments [68]. Inflammatory cytokines can influence neurotransmitter function, alter neuronal plasticity, and disrupt the delicate balance of neuroendocrine systems involved in mood regulation and cognitive processes [69]. Moreover, inflammation can induce oxidative stress, which further contributes to neuronal damage and psychological symptoms.

Understanding the psychoneuroimmunological interactions in menopause provides insights into the mechanisms underlying the relationship between hormonal, psychological, and immunological factors. This comprehensive perspective helps elucidate the complex interplay and contributions of each factor to menopause-related psychological symptoms. Integrating this knowledge can guide the development of targeted interventions that address multiple aspects of menopause, including hormonal regulation, immune function, and psychological well-being.

Psychosocial Factors and Menopausal Symptoms

Stress and menopause

Stress is a significant psychosocial factor that can influence menopausal symptoms and overall wellbeing. Menopause is often accompanied by various stressors, including physical changes, life transitions, and psychosocial challenges. Understanding the relationship between stress and menopause is essential for a comprehensive understanding of women's experiences during this transitional phase.

Stress response and hormonal changes: Stress activates the body's stress response system, which involves the Hypothalamic-Pituitary-Adrenal (HPA) axis and the release of stress hormones, such as

cortisol. During menopause, hormonal changes, including the decline in estrogen levels, can impact the stress response system. Estrogen has regulatory effects on the HPA axis, influencing cortisol release and stress hormone regulation. As estrogen levels decline, the stress response system may become dysregulated, leading to altered cortisol levels and stress response patterns.

Estrogens are a group of hormones that play important roles in regulating the development and functioning of the female reproductive system. There are four types of estrogens produced naturally in the body: Estrone (E1), Estradiol (E2), Estriol (E3), and Etestrol (E4). Among these, estradiol is the most common and powerful estrogen until menopause occurs. These hormones are made from a type of fat called cholesterol, and an enzyme called aromatase helps convert cholesterol into estrogens. In women who haven't reached menopause, the ovaries are the main source of estrogen production. During pregnancy, the placenta also produces estrogen. However, after menopause, estrogen levels from the ovaries decrease significantly, and the majority of remaining estrogens are produced in other tissues like the brain, kidneys, bones, skin, and fat tissues [70-72].

Impact of stress on immune function: Stress can have profound effects on immune function, and this influence is particularly relevant during menopause. Chronic or prolonged stress can dysregulate the immune system, leading to increased inflammation and altered immune cell function. Stress hormones, such as cortisol, can modulate immune responses by influencing the production of inflammatory cytokines and the activity of immune cells.

The impact of stress on immune function during menopause can contribute to a heightened pro-inflammatory state, potentially exacerbating menopausal symptoms and increasing the risk of immune-related conditions. Moreover, chronic stress can impair immune surveillance and compromise the body's ability to defend against pathogens, potentially leading to increased vulnerability to infections and other health complications.

It is important to note that stress is a multifaceted construct influenced by various factors, including individual perceptions, coping mechanisms, and social support. Women's experiences of stress during menopause can differ greatly, and not all women will have the same stress response patterns. Understanding the interplay between stress, hormonal changes,

and immune function during menopause provides insights into the complex interactions that contribute to menopausal symptoms and overall well-being [73].

Addressing psychosocial factors, including stress, is crucial for comprehensive menopausal care. Strategies such as stress management techniques, relaxation exercises, mindfulness practices, and social support systems can help mitigate the impact of stress on menopausal symptoms and improve overall psychological and immune well-being. By integrating psychosocial approaches into menopause management, healthcare providers can provide holistic support and enhance women's quality of life during this transformative phase.

Social Support and Coping Mechanisms

Social support and coping mechanisms play essential roles in influencing menopausal symptoms and overall psychological well-being. The psychosocial aspects of menopause, including the social context and coping strategies employed, can significantly impact women's experiences during this transitional phase [74].

Influence of social support on psychological wellbeing: Social support, which encompasses emotional, informational, and practical assistance from others, plays a crucial role in navigating menopausal symptoms and promoting psychological well-being. Adequate social support can buffer the negative effects of stress, reduce feelings of isolation, and provide a sense of belonging and understanding. Social support networks, including family, friends, and healthcare professionals, can offer validation, empathy, and advice, which can alleviate psychological distress associated with menopause [73].

Studies have shown that women with stronger social support networks report better psychological well-being, reduced levels of anxiety and depression, and improved quality of life during menopause. Moreover, social support can enhance resilience, helping women effectively cope with menopausal challenges and adapt to hormonal and life changes.

Coping strategies for menopausal symptoms: Coping mechanisms are strategies individuals employ to manage and adapt to stressful situations. Effective coping strategies can help women navigate menopausal symptoms and enhance psychological well-being. Some common coping strategies for menopausal symptoms include: Information seeking and education: Gathering knowledge about menopause and its associated symptoms can empower women to better understand and manage their experiences. Being well-informed enables women to make informed decisions about their health and seek appropriate support.

Lifestyle modifications: Adopting healthy lifestyle practices, such as regular exercise, maintaining a balanced diet, and getting sufficient sleep, can positively impact menopausal symptoms and overall well-being. Engaging in activities that promote relaxation, such as mindfulness meditation or yoga, can also be beneficial [75].

Cognitive-behavioral techniques: Cognitive-Behavioral Therapy (CBT) techniques, including cognitive restructuring and stress management, can help women reframe negative thoughts and develop effective coping strategies to manage psychological symptoms. CBT interventions have been found to be effective in reducing anxiety, depression, and overall psychological distress during menopause [76].

Support groups and counseling: Participating in support groups or seeking counseling can provide a safe space for women to share their experiences, gain support from others facing similar challenges, and receive professional guidance. These interventions can offer emotional support, validation, and coping skills specific to menopausal symptoms.

By promoting social support and employing effective coping strategies, women can navigate the psychosocial challenges of menopause more effectively. Healthcare providers play a critical role in fostering social support networks and educating women about coping strategies. Recognizing the importance of psychosocial factors and integrating them into menopausal care can contribute to enhanced psychological well-being, improved quality of life, and successful adaptation to the changes associated with menopause.

Psychoneuroimmunology Interventions for Menopausal Women

Mind-body interventions

Mind-body interventions encompass various techniques that promote the integration of mental and physical well-being. These interventions have gained attention in menopause research due to their potential to impact psychoneuroimmunological processes and improve menopausal symptoms.

Several mind-body interventions have shown promise in enhancing psychological well-being, reducing stress, and modulating immune responses in menopausal women.

Ramadan fasting: Ramadan fasting, practiced by Muslims worldwide, involves abstaining from food and drink from dawn to sunset during the holy month of Ramadan. Studies have suggested that Ramadan fasting may have potential benefits for women's health [77], including menopausal women. The fasting period has been associated with positive changes in neurohormones levels [78], insulin sensitivity, and body composition, which may contribute to improved overall health and well-being. However, more research is needed to fully understand the specific effects of Ramadan fasting on menopausal symptoms and psychoneuroimmunological processes.

Meditation: Meditation practices involve focused attention and mindfulness to cultivate a state of mental clarity and emotional stability. Various forms of meditation, such as mindfulness meditation, loving-kindness meditation, and transcendental meditation, have been explored in menopausal women. Meditation has shown potential in reducing psychological distress, improving mood, and enhancing cognitive function. Additionally, meditation practices regularly may modulate stress responses and positively impact immune function [79], improving mental health [80], promoting improvements in menopausal symptoms [81].

Mindfulness: Mindfulness is the practice of intentionally paying attention to the present moment without judgment. Mindfulness-based interventions, such as Mindfulness-Based Stress Reduction (MBSR) and Mindfulness-Based Cognitive Therapy (MBCT), have been investigated in menopausal women. These interventions involve training individuals to cultivate mindful awareness in daily life, which can reduce stress, alleviate psychological symptoms, and enhance overall quality of life. Mindfulness practices have also shown potential in modulating immune responses and reducing several markers of inflammation [82]. Practicing mindfulness techniques can help reduce the intensity of hot flashes and emotional symptoms during menopause, leading to a better overall quality of life [83].

Yoga: Yoga combines physical postures, breath control, and meditation techniques to promote physical and mental well-being. Research has indicated that yoga can improve menopausal women

with vasomotor symptoms [84]. Yoga practices may enhance stress resilience, reduce cortisol levels, and improve immune function, potentially influencing the psychoneuroimmunological processes in menopausal women.

Tai chi: Tai Chi is an ancient Chinese martial art characterized by slow and gentle movements. It integrates physical postures, breath control, and mindfulness. Studies have shown that Tai Chi practice can improve menopausal symptoms, including sleep disturbances, mood disturbances, and overall quality of life [85]. Tai Chi's meditative and low-impact movements may promote relaxation, reduce stress, and modulate immune responses, providing psychoneuroimmunological benefits during menopause.

Reiki: Reiki is an energy healing technique that involves the laying of hands to channel universal life energy. Although limited scientific research exists on Reiki's effects specifically in menopausal women [86], it has been suggested to promote relaxation, reduce stress, and improve overall well-being. The psychoneuroimmunological effects of Reiki remain an area for further investigation.

Yin and Yang philosophy: Menopausal syndrome is primarily caused by changes in how the body's organs respond to estrogen, in addition to a decrease in estrogen levels. Specifically, the effects of estrogen on target cells can vary or even be opposite due to different subtypes of Estrogen Receptors (ER) alpha and beta. The imbalance in the levels and ratio of ER α and ER β expression is also a significant factor contributing to abnormal estrogenic effects in organs and the overall imbalance of the body's Yin and Yang [87].

Ikigai (生き甲斐): The concept of "Ikigai" is rooted in Japanese culture and refers to a sense of purpose, meaning, and fulfillment in life. It encompasses the idea of finding joy, satisfaction, and a reason to wake up each day. From a psychoneuroimmunology perspective, the relationship between Ikigai and mind-body interventions can be explored in terms of their impact on psychological, neurological, and immunological processes.

 Psychological Well-being: Ikigai is closely tied to psychological well-being. Having a sense of purpose and meaning in life has been associated with positive emotions, increased life satisfaction, and improved mental health. Mind-body interventions, such as meditation,

mindfulness, and yoga, can promote psychological well-being by reducing stress, enhancing emotional regulation, and fostering a sense of inner calm and contentment. These practices have been shown to improve mood, reduce symptoms of anxiety and depression, and increase overall psychological resilience.

- Neurological Mechanisms: Mind-body interventions can influence neurological processes that contribute to the experience of Ikigai. For example, meditation practices have been found to promote neuroplasticity, which refers to the brain's ability to reorganize and form new neural connections. This neuroplasticity can enhance cognitive functions, including attention, memory, and executive functions, which are important for cultivating a sense of purpose and fulfillment in life. Additionally, mind-body interventions can modulate the activity and connectivity of brain regions involved in emotion regulation, self-awareness, and reward processing, all of which play a role in the experience of Ikigai.
- Immune Function: The mind-body connection extends to the immune system, which is an integral part of psychoneuroimmunology. Chronic stress, negative emotions, and psychological distress have been associated with dysregulated immune function and increased inflammation. Conversely, mindbody interventions that promote relaxation, positive emotions, and stress reduction can modulate immune responses and promote immune balance. For instance, practices like meditation and yoga have been shown to reduce markers of inflammation, enhance immune cell function, and improve overall immune health. By reducing stress and inflammation, mind-body interventions can create a favorable psychoneuroimmunological environment that supports the cultivation of Ikigai.

Integrating mind-body interventions into menopausal care can offer a holistic approach that addresses both the physical and psychological aspects of menopausal symptoms. These interventions have the potential to positively impact psychoneuroimmunological processes, enhancing overall well-being during menopause.

By incorporating mind-body interventions into menopausal care, healthcare providers can offer women a range of non-pharmacological options to manage their symptoms and improve their quality of life. These interventions can be utilized as standalone therapies or in combination with other treatments, depending on individual needs and preferences.

It is important to note that the effectiveness of mind-body interventions may vary among individuals, and the choice of intervention should be tailored to each woman's specific needs and circumstances. Additionally, these interventions should be implemented under the guidance of trained professionals to ensure safety and maximize benefits.

Future research is needed to mechanisms underlying explore the the psychoneuroimmunological effects of mind-body interventions in menopausal women. This includes investigating their impact on hormonal regulation, stress responses, immune function, and inflammatory markers. Additionally, well-designed clinical trials are necessary to evaluate the efficacy and longterm effects of these interventions on menopausal symptoms and overall well-being.

In a nutshell, mind-body interventions, such as Ramadan fasting, meditation, mindfulness, yoga, Tai Chi, Reiki, the Yin and Yang philosophy and Ikigai, offer promising avenues for incorporating psychoneuroimmunological approaches into menopausal care. By addressing the interconnectedness of the mind, body, and immune system, these interventions have the potential to enhance psychological well-being, modulate immune function, and improve overall quality of life for women experiencing menopause.

Pharmacological interventions

Scientists have conducted numerous experiments to find different ways to ease the symptoms experienced during menopause. They have explored various pharmacological options, both hormonal and non-hormonal, to address these symptoms. Hormonal treatments involve the use of specific hormones, such as androgens (male hormones), (female hormones), progestogens (progesterone-like hormones), tibolone (a synthetic hormone), tissue-selective estrogen complex or TSEC (a combination of estrogen and another medication called bazedoxifene), and selective estrogen receptor modulators or SERMs (medications that interact with estrogen receptors in specific ways). Additionally, there is a medication called ospemifene that also works on estrogen receptors. Non-hormonal treatments, on the other hand, do not involve the use of hormones. They include medications such as SSRIs **Liferature**

(selective serotonin reuptake inhibitors) and SNRIs (serotonin-norepinephrine reuptake inhibitors), which are commonly used to treat depression; Gabapentin and Pregabalin, which are primarily used for managing seizures and nerve-related pain; Oxybutynin, which helps control bladder function; and Neurokinin antagonists, which target a specific type of neurotransmitter in the brain. Researchers have examined all of these options to determine their effectiveness in relieving menopausal symptoms, and each treatment works through different mechanisms in the body [88].

Pharmacological interventions play a significant role in the management of menopausal symptoms and their impact on psychoneuroimmunological processes. Two commonly used pharmacological interventions for menopausal women are Hormone Replacement Therapy (HRT) and psychotropic medications.

Hormone Replacement Therapy (HRT): HRT involves the administration of exogenous hormones, typically estrogen alone or in combination with progestin, to alleviate menopausal symptoms and restore hormonal balance. Estrogen plays a vital role in regulating various physiological processes, including those related to the central nervous system and immune system. HRT can provide relief from vasomotor symptoms (such as hot flashes and night sweats), genitourinary symptoms (such as vaginal dryness and urinary incontinence), and mood disturbances commonly experienced during menopause.

From a psychoneuroimmunology perspective, HRT can influence psychoneuroendocrine processes by modulating hormonal levels, which in turn affect neurotransmitter systems, stress responses, and immune function. Estrogen has neuroprotective properties, and its decline during menopause can contribute to cognitive changes and mood disturbances. HRT can help mitigate these effects by restoring estrogen levels, improving cognitive function, and positively impacting mood and emotional well-being.

However, the decision to use HRT should be individualized, taking into consideration factors such as a woman's medical history, risk factors, and preferences. Potential risks associated with HRT, including an increased risk of cardiovascular disease, breast cancer, and thromboembolic events, should be carefully evaluated and discussed with healthcare providers.

Psychotropic Medications: Psychotropic medications, including Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs), are commonly prescribed to manage mood disorders [89], such as depression and anxiety, during menopause. These medications act on the central nervous system to modulate neurotransmitter levels, primarily serotonin and norepinephrine.

Psychoneuroimmunologically, psychotropic medications can influence the communication between the brain and the immune system. These medications have been shown to regulate inflammatory responses and modulate immune cell function. By reducing inflammation and restoring neurotransmitter balance, psychotropic medications can alleviate psychological symptoms and potentially have beneficial effects on immune function in menopausal women.

It is important to note that the use of pharmacological interventions should be guided by healthcare professionals, considering individual needs, medical history, and potential interactions with other medications. The benefits and risks of these interventions should be carefully weighed, and treatment plans should be tailored to address both the specific menopausal symptoms and the psychoneuroimmunological aspects of each woman.

Pharmacological interventions, hormone replacement therapy and psychotropic medications, offer valuable options for managing menopausal symptoms and addressing psychoneuroimmunological aspects of menopause. By targeting hormonal imbalances, mood disturbances, and immune dysregulation, these interventions can contribute to improved quality of life, psychological well-being, and overall health for menopausal women.

Complementary and alternative medicine

Many women turn to Complementary and Alternative Medicine (CAM) to help manage their menopausal symptoms. CAM refers to nontraditional treatments that are used alongside or instead of conventional medical approaches. Some examples of CAM for menopause include: pollen extract, Black Cohosh (Cimicifuga racemosa), Wild Yam (Dioscorea), Dong Quai (Angelica sinensis), Maca (Lepidium meyenii), and evening Primrose Oil (Oenothera biennis). Other CAM approaches include: vitamin E, acupuncture, reflexology, hypnosis or self-hypnosis, yoga, meditation, homeopathy (using: sepia, lachesis, and pulsatilla). Traditional Chinese Medicine (TCM) incorporates various approaches such as herbal remedies, self-massage, acupuncture, dietary changes, and meditative exercises like Tai Chi to manage menopausal symptoms. Phytoestrogens are plant-derived compounds that can have estrogen-like effects in the body. Common sources of phytoestrogens are soy and red clover (isoflavones), flaxseed (lignans), and hops (Humulus lupulus). It's important to note that the evidence regarding the effectiveness of natural products for menopause is mixed, and there may be safety concerns associated with their use. Healthcare providers should consider the available evidence when adopting an integrative health approach to managing menopausal symptoms [90].

Music therapy

Music therapy has shown promising effects in the management of menopause symptoms. A randomized-controlled study by Koçak and Varişoğlu (2022) investigated the impact of listening to music on menopausal symptoms and depression levels in postmenopausal women. The study involved 48 participants, with half of them assigned to the music group and the other half to the control group. The women in the music group listened to music played by the researcher during 18 sessions over a period of six weeks. The results demonstrated a significant decrease in depression scores among the women in the music group compared to the control group. This finding suggests that music therapy can be an effective intervention for alleviating depression associated with menopause. By providing a nonpharmacological approach, music therapy offers a safe and accessible option that may complement or even reduce the need for medication in managing menopausal depression [91].

Lifestyle modifications

Lifestylemodifications are important interventions in the management of menopausal symptoms and the promotion of psychoneuro immunological wellbeing. Two key aspects of lifestyle modifications for menopausal women are exercise and physical activity, as well as nutrition and dietary interventions.

Exercise and physical activity

Regular exercise and physical activity have been shown to have numerous benefits for menopausal women, including improvements in mood, cognitive function, cardiovascular health, and overall quality of life. From a psychoneuroimmunology perspective, exercise influences various psychoneuroendocrine and immune processes.

Exercise promotes the release of endorphins and other neurotransmitters, which can improve mood and reduce symptoms of anxiety and depression. It also enhances cerebral blood flow and neuroplasticity, potentially contributing to cognitive improvements during menopause. Exercise can modulate the stress response system, reducing cortisol levels and improving stress resilience. Furthermore, physical activity has been shown to have immunomodulatory effects, such as enhancing immune cell function and reducing chronic low-grade inflammation [92].

Different types of exercise, including aerobic exercise, resistance training, and mind-body exercises like yoga or Tai Chi, can offer unique benefits. Aerobic exercise improves cardiovascular fitness and can help reduce vasomotor symptoms, such as hot flashes. Resistance training helps maintain muscle strength and bone density, which can be affected by hormonal changes during menopause. Mind-body exercises combine physical movement with mindfulness and relaxation techniques, providing benefits for both physical and mental well-being [93].

Nutrition and dietary interventions

Nutrition and dietary interventions are crucial for supporting overall health and well-being during menopause. A well-balanced diet can provide essential nutrients, antioxidants, and phytochemicals that support psychoneuroimmunological processes. Specific dietary factors have been investigated for their potential effects on menopausal symptoms and immune function.

It was discovered that consuming legumes such as beans, lentils, and chickpeas is associated with fewer menopausal symptoms. On the other hand, extra virgin olive oil consumption was associated with a reduction in menopausal psychological symptoms. In simplified terms, incorporating legumes into your diet can reduce the severity of menopausal symptoms. These symptoms may include hot flashes, night sweats, alterations in temperament, and physical discomfort. Legumes are a variety of plant-based protein that provide numerous health advantages. In addition, consuming extra virgin olive oil, a high-quality and minimally processed form of olive oil, may aid in the reduction of psychological symptoms associated with menopause. Mood swings, irritability,

anxiety, and depression are examples of these symptoms. Incorporating legumes into your diet and cooking with extra virgin olive oil may be beneficial for managing menopausal symptoms and promoting emotional health, according to the findings [94].

Phytoestrogens, found in foods like soybeans, flaxseeds, and legumes, have estrogen-like properties and may help alleviate some menopausal symptoms [95]. Omega-3 fatty acids, commonly found in fatty fish, walnuts, and flaxseeds, have been associated with reduced inflammation and improved cognitive function. Antioxidant-rich fruits and vegetables provide protective effects against oxidative stress and inflammation. Vitamin D, obtained from sunlight exposure and dietary sources like fortified foods and fatty fish, plays a role in immune regulation and bone health. Furthermore, estrogen, a hormone present in the body, enhances the function of an enzyme that helps activate vitamin D. Therefore, when estrogen levels decrease during menopause, it may result in symptoms associated with vitamin D deficiency. Interestingly, in people who are not going through menopause, taking vitamin D supplements has been shown to improve mood [96].

Low levels of a substance called 25-hydroxyvitamin D (25(OH)D) in the blood, which are commonly seen in menopause, can be influenced by factors such as diet, lifestyle, changes in body composition (like fat and muscle), insulin sensitivity, and reduced physical activity. Taking vitamin D supplements can increase the levels of 25(OH)D in the blood, bringing them back to normal and also affecting other markers in the body related to bone health. In women with very low levels of 25(OH)D (below 10 ng/ml), vitamin D supplementation may help improve the density of the bones. Low levels of vitamin D have also been linked to conditions like metabolic syndrome (a combination of health issues), high levels of triglycerides (a type of fat in the blood), and low levels of "good" cholesterol. Vitamin D supplements, when compared to a placebo (a dummy pill), may reduce the risk of metabolic syndrome, high triglycerides, and high blood sugar levels. The amount of vitamin D supplement needed may vary depending on a person's body mass index (BMI) and the amount of body fat they have. While vitamin D supplementation might improve glucose metabolism (how the body processes sugar) in people at risk of diabetes, the data regarding its effects on muscle strength are not consistent and differ in different studies [97].

It is important for menopausal women to maintain

healthy body weight, as obesity is associated with increased menopausal symptoms and inflammation [98]. Adopting a diet that is low in processed foods, added sugars, and unhealthy fats, and high in whole grains, lean proteins, fruits, vegetables, and healthy fats can support optimal health during menopause.

It is advisable for menopausal women to consult with healthcare professionals or registered dietitians to individualize dietary recommendations based on specific needs, preferences, and any underlying medical conditions.

In conclusion, lifestyle modifications, including exercise and physical activity, as well as nutrition and dietary interventions, play significant roles in managing menopausal symptoms and promoting psychoneuroimmunological well-being. These interventions have the potential to improve mood, cognitive function, immune responses, and overall quality of life during menopause. By adopting a healthy and active lifestyle, menopausal women can optimize their psychological, neurological, and immune health, leading to a smoother transition and enhanced well-being.

Future Directions and Research Implications

Potential areas of further investigation

The field of psychoneuroimmunology in menopause research is still evolving, and there are several potential areas for further investigation:

Longitudinal studies: Conducting longitudinal studies can provide valuable insights into the dynamic relationships between psychosocial factors, neuroendocrine processes, immune function, and menopausal symptoms. Long-term assessments can help identify patterns of change and potential predictive factors for menopausal outcomes.

Mechanistic studies: Investigating the underlying mechanisms through which psychosocial factors, such as stress or social support, influence neuroendocrine and immune processes during menopause is crucial. Exploring the molecular, cellular, and genetic mechanisms involved can enhance our understanding of the psychoneuroimmunological pathways and potential therapeutic targets.

Personalized approaches: Menopause is a highly individualized experience, and studying individual differences can help identify specific

factors that contribute to variations in menopausal symptoms, immune responses, and psychological well-being. This may involve exploring genetic, epigenetic, and psychosocial factors that modulate the psychoneuroimmunological processes during menopause [99].

Importance of integrating psychoneuroimmunology approaches in menopause research

Integrating psychoneuroimmunology approaches in menopause research is vital for a comprehensive understanding of menopausal health and well-being. Psychoneuroimmunology provides a framework that acknowledges the interconnectedness of psychological, neurological, and immune processes, which all play critical roles during menopause.

By considering the psychoneuroimmunological aspects, researchers can investigate the complex interactions between stress, mood, hormones, immune function, and menopausal symptoms. This integrative approach allows for a deeper understanding of the underlying mechanisms driving menopausal changes and can guide the development of targeted interventions that address multiple aspects of menopause.

Promising strategies for improving menopausal health and well-being

Based on the principles of psychoneuroimmunology, several promising strategies can be explored to improve menopausal health and well-being:

Integrated approaches: Developing integrated combine pharmacological, interventions that psychosocial, and lifestyle components can optimize menopausal care. Such interventions may include hormone therapy, psychosocial support, mind-body interventions, exercise, and dietary modifications tailored to individual needs.

Different psychological approaches, such as cognitive behavioral therapy, mindfulness-based stress reduction, hypnotherapy, and relaxation techniques, have shown potential in helping to reduce vasomotor symptoms and hot flashes in women who have gone through menopause and are generally in good health. These interventions focus on changing thoughts, managing stress, enhancing mindfulness, using hypnotic techniques, and promoting relaxation. They have been found to be effective in addressing and alleviating the discomfort caused by hot flashes in postmenopausal women [100].

Mindfulness-based interventions: **Further** investigating the effects of mindfulness-based interventions, such as Mindfulness-Based Stress Reduction (MBSR) or Mindfulness-Based Cognitive Therapy (MBCT), can provide valuable insights into their impact on menopausal symptoms, immune function, and psychological well-being. Understanding the underlying mechanisms and optimizing the delivery of these interventions can enhance their effectiveness.

Mindfulness-based interventions, which involve practicing mindfulness techniques, can potentially enhance the quality of life for women experiencing menopause. These interventions focus on cultivating present-moment awareness, acceptance, non-judgmental attitude towards one's thoughts, emotions, and bodily sensations. By engaging in mindfulness practices, menopausal women may experience benefits such as reduced stress, improved emotional well-being, better management of symptoms, and an overall enhanced sense of well-being. These interventions provide tools and techniques that can empower women to navigate the challenges and changes associated with menopause, ultimately leading to an improved quality of life [101].

Targeted immune modulation: **Exploring** that strategies specifically immune target modulation during menopause can help alleviate menopausal symptoms and improve overall wellbeing. This may involve interventions that reduce inflammation, support immune cell function, and promote immune balance, such as the use of targeted immunomodulatory agents or natural compounds with immunomodulatory properties [102].

Psychosocial support: Recognizing the importance of psychosocial factors and incorporating psychosocial support into menopausal care is crucial. Providing education, counseling, and support groups can help women manage the psychological challenges of menopause, enhance coping strategies, and improve overall psychological well-being [103].

Empowering menopausal women is essential for ensuring their well-being and overall health during the latter part of their lives. By empowering them, it means providing them with the knowledge, resources, and support they need to navigate this stage of life successfully. This empowerment allows women to make informed decisions about their health, seek appropriate medical care, adopt healthy lifestyle practices, and maintain a positive outlook. By doing

so, women can optimize their health and quality of life during the post-reproductive years, enabling them to enjoy this phase and make the most of their remaining years [104].

By further investigating these strategies and exploring their effects on psychoneuroimmunological processes, researchers can contribute to the development of evidence-based interventions that promote optimal health and well-being for menopausal women.

Conclusion

Summary of key points

In summary, the field of psychoneuroimmunology offers a valuable framework for understanding the complex interactions between psychological, neurological, and immune processes during menopause. Menopause is a transitional phase marked by hormonal changes that can impact psychological well-being, cognitive functioning, immune function, and overall quality of life. Psychoneuroimmunology examines the bidirectional relationships between these factors, recognizing that psychological and social factors can influence neuroendocrine and immune processes, and vice versa.

Throughout this discussion, several key points have emerged. First, menopause is a multidimensional experience that goes beyond hormonal changes. It involves psychological, cognitive, and immunological aspects that interact and contribute to women's overall well-being during this transition. Second, mind-body interventions, pharmacological interventions, lifestyle modifications, psychosocial support all play important roles in managing menopausal symptoms and promoting psychoneuroimmunological well-being. interventions address various aspects of menopause, including psychological distress, cognitive changes, immune dysregulation, and stress.

Implications of psychoneuroimmunology in menopause

Understanding the psychoneuroimmunological aspects of menopause has important implications for clinical practice and research. Healthcare professionals can adopt an integrated and holistic approach to menopausal care that considers the interplay between psychological, neurological, and immune processes. This involves providing education, counseling, and support to address the psychological

challenges, recommending mind-body interventions, considering pharmacological interventions when appropriate, and promoting lifestyle modifications such as exercise and a healthy diet.

From a research perspective, further investigation is needed to explore longitudinal changes during menopause, underlying mechanisms of psychoneuroimmunological interactions, and individual differences that influence menopausal experiences. This includes conducting mechanistic studies, exploring personalized approaches, and investigating the effectiveness of integrated interventions. By addressing these research gaps, we can advance our understanding of menopause and develop evidence-based strategies to improve menopausal care.

Call for further research and integrated approaches to improve menopausal care

There is a clear call for further research and integrated approaches to improve menopausal care from a psychoneuroimmunology perspective. Integrated interventions that consider multiple aspects of menopause, including psychological, neurological, and immune processes, have the potential to provide comprehensive support and improve women's overall well-being. Such approaches may involve collaboration among healthcare professionals from various disciplines, including gynecology, psychology, immunology, and neuroscience.

Furthermore, efforts should be made to disseminate knowledge about psychoneuro immunology menopause and its implications to healthcare providers, policymakers, and the general public. This will contribute to the development of evidence-based guidelines and interventions that can enhance menopausal care.

In conclusion, psychoneuroimmunology offers valuable insights into the complex interactions between psychological, neurological, and immune processes during menopause. By considering the psychoneuroimmunological aspects, healthcare professionals can provide comprehensive care that addresses menopausal symptoms and promotes overall well-being. Further research is needed to expand our understanding of menopause from a psychoneuroimmunology perspective and develop integrated approaches that optimize menopausal care. By embracing an interdisciplinary approach, we can improve the quality of life for menopausal women

and empower them to navigate this important phase of life with resilience and vitality.

References

- Fuenmayor MdVC, de Fernandez JC. Psychological intervention based on psychoneuroimmunology in children and adults. Health-Related Quality of Life-Measurement Tools, Predictors and Modifiers: IntechOpen. 2021. doi: 10.5772/ intechopen.99501.
- Crandall CJ, Mehta JM, Manson JE. Management of Menopausal Symptoms: A Review. JAMA. 2023 Feb 7;329(5):405-420. doi: 10.1001/jama.2022.24140. PMID: 36749328.
- Hardy C, Griffiths A, Norton S, Hunter MS. Self-help cognitive behavior therapy for working women with problematic hot flushes and night sweats (MENOS@Work): a multicenter randomized controlled trial. Menopause. 2018 May;25(5):508-519. doi: 10.1097/GME.000000000001048. PMID: 29315132.
- Chiang C, Gallicchio L, Zacur H, Miller S, Flaws JA, Smith RL. Hormone variability and hot flash experience: Results from the midlife women's health study. Maturitas. 2019 Jan;119:1-7. doi: 10.1016/j.maturitas.2018.10.007. Epub 2018 Oct 23. PMID: 30502745; PMCID: PMC6289582.
- Elkins GR, Fisher WI, Johnson AK, Carpenter JS, Keith TZ. Clinical hypnosis in the treatment of postmenopausal hot flashes: a randomized controlled trial. Menopause. 2013 Mar;20(3):291-8. doi: 10.1097/gme.0b013e31826ce3ed. PMID: 23435026; PMCID: PMC3556367.
- Monteleone P, Mascagni G, Giannini A, Genazzani AR, Simoncini T. Symptoms of menopause - global prevalence, physiology and implications. Nat Rev Endocrinol. 2018 Apr;14(4):199-215. doi: 10.1038/nrendo.2017.180. Epub 2018 Feb 2. PMID: 29393299.
- Tsavachidou D, Liebman MN. Modeling and simulation of pathways in menopause. J Am Med Inform Assoc. 2002 Sep-Oct;9(5):461-71. doi: 10.1197/jamia.m1103. PMID: 12223498; PMCID: PMC346633.
- Wharton W, Gleason CE, Olson SR, Carlsson CM, Asthana S. Neurobiological Underpinnings of the Estrogen - Mood Relationship. Curr Psychiatry Rev. 2012 Aug 1;8(3):247-256. doi: 10.2174/157340012800792957. PMID: 23990808; PMCID: PMC3753111.
- Reuben R, Karkaby L, McNamee C, Phillips NA, Einstein G. Menopause and cognitive complaints: are ovarian hormones linked with subjective cognitive decline? Climacteric. 2021 Aug;24(4):321-332. doi: 10.1080/13697137.2021.1892627. Epub 2021 Mar 15. PMID: 33719785.
- 10.McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation. 2020 Oct 23;17(1):317. doi: 10.1186/s12974-020-01998-9. PMID: 33097048; PMCID: PMC7585188.
- 11.Mattina GF, Van Lieshout RJ, Steiner M. Inflammation, depression and cardiovascular disease in women: the role of

- the immune system across critical reproductive events. Ther Adv Cardiovasc Dis. 2019 Jan-Dec;13:1753944719851950. doi: 10.1177/1753944719851950. PMID: 31144599; PMCID: PMC6545651.
- 12.Barth C, de Lange AG. Towards an understanding of women's brain aging: the immunology of pregnancy and menopause. Front Neuroendocrinol. 2020 Jul;58:100850. doi: 10.1016/j. yfrne.2020.100850. Epub 2020 Jun 3. PMID: 32504632.
- 13.Slavich GM, Sacher J. Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacology (Berl). 2019 Oct;236(10):3063-3079. doi: 10.1007/s00213-019-05326-9. Epub 2019 Jul 29. PMID: 31359117; PMCID: PMC6821593.
- 14. Ali AM, Ahmed AH, Smail L. Psychological Climacteric Symptoms and Attitudes toward Menopause among Emirati Women. Int J Environ Res Public Health. 2020 Jul 13;17(14):5028. doi: 10.3390/ ijerph17145028. PMID: 32668726; PMCID: PMC7400692.
- 15.Giannini A, Caretto M, Genazzani AR, Simoncini T. Optimizing quality of life through sex steroids by their effects on neurotransmitters. Climacteric. 2019 Feb;22(1):55-59. doi: 10.1080/13697137.2018.1543265. Epub 2018 Dec 20. PMID: 30570355.
- 16.Hogervorst E, Craig J, O'Donnell E. Cognition and mental health in menopause: A review. Best Pract Res Clin Obstet Gynaecol. 2022 May;81:69-84. doi: 10.1016/j.bpobgyn.2021.10.009. Epub 2021 Nov 30. PMID: 34969617.
- 17.Tang R, Luo M, Li J, Peng Y, Wang Y, Liu B, Liu G, Wang Y, Lin S, Chen R. Symptoms of anxiety and depression among Chinese women transitioning through menopause: findings from a prospective community-based cohort study. Fertil Steril. 2019 Dec;112(6):1160-1171. doi: 10.1016/j.fertnstert.2019.08.005. PMID: 31843093.
- 18.Ali AM, Ahmed AH, Smail L. Psychological Climacteric Symptoms and Attitudes toward Menopause among Emirati Women. Int J Environ Res Public Health. 2020 Jul 13;17(14):5028. doi: 10.3390/ ijerph17145028. PMID: 32668726; PMCID: PMC7400692.
- 19. Giannini A, Caretto M, Genazzani AR, Simoncini T. Neuroendocrine changes during menopausal transition. Endocrines. 2021;2(4):405-416. doi: 10.3390/endocrines2040036.
- 20.Farrag AK, Khedr EM, Abdel-Aleem H, Rageh TA. Effect of surgical menopause on cognitive functions. Dement Geriatr Cogn Disord. 2002;13(3):193-8. doi: 10.1159/000048652. PMID: 11893842.
- 21.Conde DM, Verdade RC, Valadares ALR, Mella LFB, Pedro AO, Costa-Paiva L. Menopause and cognitive impairment: A narrative review of current knowledge. World J Psychiatry. 2021 Aug 19;11(8):412-428. doi: 10.5498/wjp.v11.i8.412. PMID: 34513605; PMCID: PMC8394691.
- 22.Russell JK, Jones CK, Newhouse PA. The Role of Estrogen in Brain and Cognitive Aging. Neurotherapeutics. 2019 Jul;16(3):649-665. doi: 10.1007/s13311-019-00766-9. PMID: 31364065; PMCID: PMC6694379.

- 23.Sochocka M, Karska J, Pszczołowska M, Ochnik M, Fułek M, Fułek K, Kurpas D, Chojdak-Łukasiewicz J, Rosner-Tenerowicz A, Leszek J. Cognitive Decline in Early and Premature Menopause. Int J Mol Sci. 2023 Mar 31;24(7):6566. doi: 10.3390/ijms24076566. PMID: 37047549; PMCID: PMC10095144.
- 24.Song X, Wu J, Zhou Y, Feng L, Yuan JM, Pan A, Koh WP. Reproductive and hormonal factors and risk of cognitive impairment among Singapore Chinese women. Am J Obstet Gynecol. 2020 Sep;223(3):410.e1-410.e23. doi: 10.1016/j. ajog.2020.02.032. Epub 2020 Feb 26. PMID: 32112728; PMCID: PMC7483640.
- 25.Honea RA, Vidoni ED, Swerdlow RH, Burns JM; Alzheimer's Disease Neuroimaging Initiative. Maternal family history is associated with Alzheimer's disease biomarkers. J Alzheimers Dis. 2012;31(3):659-68. doi: 10.3233/JAD-2012-120676. PMID: 22669011; PMCID: PMC3608420.
- 26.Cannon-Albright LA, Foster NL, Schliep K, Farnham JM, Teerlink CC, Kaddas H, Tschanz J, Corcoran C, Kauwe JSK. Relative risk for Alzheimer disease based on complete family history. Neurology. 2019 Apr 9;92(15):e1745-e1753. doi: 10.1212/WNL.0000000000007231. Epub 2019 Mar 13. PMID: 30867271; PMCID: PMC6511086.
- 27.Waldstein SR, Wendell CR, Shaked D, Hosey MM, Seliger SL, Katzel LI. Cardiovascular Disease and Cognitive Function. Handbook of Cardiovascular Behavioral Medicine. Springer; 2022. p.1363-1391.
- 28.Martins IJ, Hone E, Foster JK, Sünram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry. 2006 Aug;11(8):721-36. doi: 10.1038/sj.mp.4001854. Epub 2006 Jun 20. PMID: 16786033.
- 29. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018 Nov;14(11):653-666. doi: 10.1038/s41582-018-0070-3. PMID: 30291317.
- 30.Organization WH. Risk reduction of cognitive decline and dementia: WHO guidelines. 2019.
- 31.Sabia S, Nabi H, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. Health behaviors from early to late midlife as predictors of cognitive function: The Whitehall II study. Am J Epidemiol. 2009 Aug 15;170(4):428-37. doi: 10.1093/aje/kwp161. Epub 2009 Jul 2. PMID: 19574344; PMCID: PMC2727179.
- 32.Lindert J, Paul KC, Lachman ME, Ritz B, Seeman TE. Depression, Anxiety-, and Anger and Cognitive Functions: Findings From a Longitudinal Prospective Study. Front Psychiatry. 2021 Aug 6;12:665742. doi: 10.3389/fpsyt.2021.665742. PMID: 34421666; PMCID: PMC8377351.
- 33.Robinson OJ, Vytal K, Cornwell BR, Grillon C. The impact of anxiety upon cognition: perspectives from human threat of shock studies. Front Hum Neurosci. 2013 May 17;7:203. doi: 10.3389/ fnhum.2013.00203. PMID: 23730279; PMCID: PMC3656338.

- 34.Lukasik KM, Waris O, Soveri A, Lehtonen M, Laine M. The Relationship of Anxiety and Stress With Working Memory Performance in a Large Non-depressed Sample. Front Psychol. 2019 Jan 23;10:4. doi: 10.3389/fpsyg.2019.00004. PMID: 30728790; PMCID: PMC6351483.
- 35.Gava G, Orsili I, Alvisi S, Mancini I, Seracchioli R, Meriggiola MC. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. Medicina (Kaunas). 2019 Oct 1;55(10):668. doi: 10.3390/medicina55100668. PMID: 31581598; PMCID: PMC6843314.
- 36.Ameratunga D, Goldin J, Hickey M. Sleep disturbance in menopause. Intern Med J. 2012 Jul;42(7):742-7. doi: 10.1111/j.1445-5994.2012.02723.x. PMID: 22288870.
- 37.0u YN, Tan CC, Shen XN, Xu W, Hou XH, Dong Q, Tan L, Yu JT. Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 209 Prospective Studies. Hypertension. 2020 Jul;76(1):217-225. doi: 10.1161/HYPERTENSIONAHA.120.14993. Epub 2020 May 26. PMID: 32450739.
- 38.Terracciano A, Stephan Y, Luchetti M, Albanese E, Sutin AR. Personality traits and risk of cognitive impairment and dementia. J Psychiatr Res. 2017 Jun;89:22-27. doi: 10.1016/j. jpsychires.2017.01.011. Epub 2017 Jan 22. PMID: 28153642; PMCID: PMC5374012.
- 39. Ayyubova G. Apoe4 Is A Risk Factor And Potential Therapeutic Target For Alzheimer's Disease. CNS Neurol Disord Drug Targets. 2023 Mar 3. doi: 10.2174/1871527322666230303114 425. Epub ahead of print. PMID: 36872358.
- 40. Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. Annu Rev Pathol. 2022 Jan 24;17:73-99. doi: 10.1146/annurev-pathmechdis-030421-112756. Epub 2021 Aug 30. PMID: 34460318.
- 41.Saunders TS, Jenkins N, Blennow K, Ritchie C, Muniz-Terrera G. Interactions between apolipoprotein E, sex, and amyloid-beta on cerebrospinal fluid p-tau levels in the European prevention of Alzheimer's dementia longitudinal cohort study (EPAD LCS). EBioMedicine. 2022 Sep;83:104241. doi: 10.1016/j. ebiom.2022.104241. Epub 2022 Aug 27. PMID: 36041266; PMCID: PMC9440380.
- 42.0veisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology. 2023 Apr 4;100(14):e1474-e1487. doi: 10.1212/WNL.00000000000206833. Epub 2023 Jan 25. PMID: 36697247; PMCID: PMC10104608.
- 43.Guven G, Koseoglu-Buyukkaya P, Kılıc M, Uzun D, Cavus B, Guclu-Geyik F, Lohmann E, Samanci B, Gurvit H, Hanagasi H, Bilgic B. Association of Estrogen Receptor 1 (ESR1) Pvull and Xbal polymorphisms and peripheral ESR1 mRNA levels with Alzheimer's disease. Preprint. 2023.
- 44. Koire A, Joffe H, Buckley R. Menopausal Hormone Therapy and

- the Mind: The Role of Hormone Replacement in the Prevention and Treatment of Cognitive Decline, Dementia, and Cognitive Dysfunction of Depression. Harv Rev Psychiatry. 2022 Jul-Aug 01;30(4):215-225. doi: 10.1097/HRP.000000000000339. Epub 2022 May 26. PMID: 35616610.
- 45. Girotra P, Behl T, Sehgal A, Singh S, Bungau S. Investigation of the Molecular Role of Brain-Derived Neurotrophic Factor in Alzheimer's Disease. J Mol Neurosci. 2022 Feb;72(2):173-186. doi: 10.1007/s12031-021-01824-8. Epub 2021 Aug 23. PMID: 34424488.
- 46.Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. Wiley Interdiscip Rev RNA. 2022 Sep;13(5):e1713. doi: 10.1002/wrna.1713. Epub 2022 Jan 24. PMID: 35075821.
- 47.Yoon EJ, Choi Y, Park D. Improvement of Cognitive Function in Ovariectomized Rats by Human Neural Stem Cells Overexpressing Choline Acetyltransferase via Secretion of NGF and BDNF. Int J Mol Sci. 2022 May 16;23(10):5560. doi:10.3390/ iims23105560. PMID: 35628371; PMCID: PMC9146967.
- 48.Mahdavi-Roshan M, Salari A, Kheirkhah J, Ghorbani Z. The Effects of Probiotics on Inflammation, Endothelial Dysfunction, and Atherosclerosis Progression: A Mechanistic Overview. Heart Lung Circ. 2022 May;31(5):e45-e71. doi: 10.1016/j. hlc.2021.09.006. Epub 2022 Feb 10. PMID: 35153150.
- 49. Schoenberg PL, Gonzalez KM. Systematic review of high-dimensional omics in mind-body medicine. OBM Integrative and Complementary Medicine. 2022;7(4):1-34. doi: 10.21926/obm.icm.2204052.s
- 50.Singh-Manoux A, Dugravot A, Brunner E, Kumari M, Shipley M, Elbaz A, Kivimaki M. Interleukin-6 and C-reactive protein as predictors of cognitive decline in late midlife. Neurology. 2014 Aug 5;83(6):486-93. doi: 10.1212/WNL.00000000000000665. Epub 2014 Jul 2. PMID: 24991031; PMCID: PMC4141998.
- 51. Ancelin ML, Farré A, Carrière I, Ritchie K, Chaudieu I, Ryan J. C-reactive protein gene variants: independent association with late-life depression and circulating protein levels. Transl Psychiatry. 2015 Jan 20;5(1):e499. doi: 10.1038/tp.2014.145. PMID: 25603415; PMCID: PMC4312833.
- 52.Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules. 2022 Feb 11;27(4):1210. doi: 10.3390/molecules27041210. PMID: 35209007; PMCID: PMC8876037.
- 53.Roda AR, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer's disease. Neural Regen Res. 2022 Aug;17(8):1666-1674. doi: 10.4103/1673-5374.332127. PMID: 35017413; PMCID: PMC8820696.
- 54.Hullinger R, Puglielli L. Molecular and cellular aspects of agerelated cognitive decline and Alzheimer's disease. Behav Brain Res. 2017 Mar 30;322(Pt B):191-205. doi: 10.1016/j. bbr.2016.05.008. Epub 2016 May 7. PMID: 27163751; PMCID: PMC5099115.

- 55.Tandon VR, Sharma S, Mahajan A, Mahajan A, Tandon A. Menopause and Sleep Disorders. J Midlife Health. 2022 Jan-Mar;13(1):26-33. doi: 10.4103/jmh.jmh_18_22. Epub 2022 May 2. PMID: 35707298; PMCID: PMC9190958.
- 56.Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci. 2021 Jan 14;14:625397. doi: 10.3389/fnins.2020.625397. PMID: 33519372; PMCID: PMC7840832.
- 57.Baker FC, Lampio L, Saaresranta T, Polo-Kantola P. Sleep and Sleep Disorders in the Menopausal Transition. Sleep Med Clin. 2018 Sep;13(3):443-456. doi: 10.1016/j.jsmc.2018.04.011. PMID: 30098758; PMCID: PMC6092036.
- 58.Harris AL, Harrison A. Examining Sleep Disturbance During the Menopausal Period. Nurs Womens Health. 2020 Apr;24(2):134-142. doi: 10.1016/j.nwh.2020.01.008. Epub 2020 Feb 27. PMID: 32112727.
- 59.Baker FC, de Zambotti M, Colrain IM, Bei B. Sleep problems during the menopausal transition: prevalence, impact, and management challenges. Nat Sci Sleep. 2018 Feb 9;10:73-95. doi: 10.2147/NSS.S125807. PMID: 29445307; PMCID: PMC5810528.
- 60.Shen Z, Patel MV, Rodriguez-Garcia M, Wira CR. Aging beyond menopause selectively decreases CD8+ T cell numbers but enhances cytotoxic activity in the human endometrium. Immun Ageing. 2022 Nov 12;19(1):55. doi: 10.1186/s12979-022-00312-w. PMID: 36371240; PMCID: PMC9652910.
- 61.Gameiro CM, Romão F, Castelo-Branco C. Menopause and aging: changes in the immune system—a review. Maturitas. 2010 Dec;67(4):316-20. doi: 10.1016/j.maturitas.2010.08.003. Epub 2010 Sep 1. PMID: 20813470.
- 62.Malutan AM, Dan M, Nicolae C, Carmen M. Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz Menopauzalny. 2014 Jun;13(3):162-8. doi: 10.5114/ pm.2014.43818. Epub 2014 Jun 30. PMID: 26327849; PMCID: PMC4520358.
- 63.Shivers KY, Amador N, Abrams L, Hunter D, Jenab S, Quiñones-Jenab V. Estrogen alters baseline and inflammatory-induced cytokine levels independent from hypothalamic-pituitary-adrenal axis activity. Cytokine. 2015 Apr;72(2):121-9. doi: 10.1016/j. cyto.2015.01.007. Epub 2015 Jan 31. PMID: 25647266; PMCID: PMC4365931.
- 64. Maier SF, Watkins LR, Fleshner M. Psychoneuroimmunology. The interface between behavior, brain, and immunity. Am Psychol. 1994 Dec;49(12):1004-17. doi: 10.1037//0003-066x.49.12.1004. PMID: 7818221.
- 65.Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev. 2018 Jan 1;98(1):477-504. doi: 10.1152/physrev.00039.2016. PMID: 29351513; PMCID: PMC5866360.
- 66.Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015 Apr;294(2):63-9. doi: 10.1016/j.cellimm.2015.01.018. Epub 2015 Feb 7. PMID: 25682174; PMCID: PMC4380804.

- 67.Engler-Chiurazzi EB, Chastain WH, Citron KK, Lambert LE, Kikkeri DN, Shrestha SS. Estrogen, the Peripheral Immune System and Major Depression A Reproductive Lifespan Perspective. Front Behav Neurosci. 2022 Apr 15;16:850623. doi: 10.3389/fnbeh.2022.850623. PMID: 35493954; PMCID: PMC9051447.
- 68.Feng T, Tripathi A, Pillai A. Inflammatory Pathways in Psychiatric Disorders: The case of Schizophrenia and Depression. Curr Behav Neurosci Rep. 2020 Sep;7(3):128-138. doi: 10.1007/ s40473-020-00207-4. Epub 2020 Jul 26. PMID: 34178573; PMCID: PMC8223755.
- 69.Richardson B, MacPherson A, Bambico F. Neuroinflammation and neuroprogression in depression: Effects of alternative drug treatments. Brain Behav Immun Health. 2022 Nov 8;26:100554. doi: 10.1016/j.bbih.2022.100554. PMID: 36388140; PMCID: PMC9663329.
- 70.Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013 Mar;19(3):197-209. doi: 10.1016/j.molmed.2012.12.007. Epub 2013 Jan 22. PMID: 23348042; PMCID: PMC3595330.
- 71.Blakemore J, Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (Bethesda). 2016 Jul;31(4):258-69. doi: 10.1152/physiol.00054.2015. PMID: 27252161.
- 72.Harding AT, Heaton NS. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers (Basel). 2022 Feb 12;14(4):909. doi: 10.3390/cancers14040909. PMID: 35205657; PMCID: PMC8870346.
- 73.Arnot M, Emmott EH, Mace R. The relationship between social support, stressful events, and menopause symptoms. PLoS One. 2021 Jan 27;16(1):e0245444. doi: 10.1371/journal. pone.0245444. PMID: 33503073; PMCID: PMC7840006.
- 74.Namazi M, Sadeghi R, Behboodi Moghadam Z. Social Determinants of Health in Menopause: An Integrative Review. Int J Womens Health. 2019 Dec 9;11:637-647. doi: 10.2147/IJWH. S228594. PMID: 31849539; PMCID: PMC6910086.
- 75.Kim HR, Yang HM. Facilitators and Inhibitors of Lifestyle Modification and Maintenance of KOREAN Postmenopausal Women: Revealing Conversations from FOCUS Group Interview. Int J Environ Res Public Health. 2020 Nov 5;17(21):8178. doi: 10.3390/ijerph17218178. PMID: 33167466; PMCID: PMC7663947.
- 76.Hunter MS. Cognitive behavioral therapy for menopausal symptoms. Climacteric. 2021 Feb;24(1):51-56. doi: 10.1080/13697137.2020.1777965. Epub 2020 Jul 6. PMID: 32627593.
- 77.Nair PM, Khawale PG. Role of therapeutic fasting in women's health: An overview. J Midlife Health. 2016 Apr-Jun;7(2):61-4. doi: 10.4103/0976-7800.185325. PMID: 27499591; PMCID: PMC4960941.
- 78.Zangeneh F, Salman Yazdi R, Naghizadeh MM, Abedinia N. Effect of Ramadan Fasting on Stress Neurohormones in Women with Polycystic Ovary Syndrome. J Family Reprod Health. 2015 Jun;9(2):51-7. PMID: 26175759; PMCID: PMC4500815.

- 79.Shen H, Chen M, Cui D. Biological mechanism study of meditation and its application in mental disorders. Gen Psychiatr. 2020 Jul 13;33(4):e100214. doi: 10.1136/gpsych-2020-100214. PMID: 32695961; PMCID: PMC7359050.
- 80.Chételat G, Lutz A, Arenaza-Urquijo E, Collette F, Klimecki O, Marchant N. Why could meditation practice help promote mental health and well-being in aging? Alzheimers Res Ther. 2018 Jun 22;10(1):57. doi: 10.1186/s13195-018-0388-5. PMID: 29933746; PMCID: PMC6015474.
- 81.Sung MK, Lee US, Ha NH, Koh E, Yang HJ. A potential association of meditation with menopausal symptoms and blood chemistry in healthy women: A pilot cross-sectional study. Medicine (Baltimore). 2020 Sep 4;99(36):e22048. doi: 10.1097/MD.00000000000022048. PMID: 32899065; PMCID: PMC7478772.
- 82.Black DS, Slavich GM. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials. Ann N Y Acad Sci. 2016 Jun;1373(1):13-24. doi: 10.1111/nyas.12998. Epub 2016 Jan 21. PMID: 26799456; PMCID: PMC4940234.
- 83.John JB, Chellaiyan DVG, Gupta S, Nithyanandham R. How Effective the Mindfulness-Based Cognitive Behavioral Therapy on Quality of Life in Women With Menopause. J Midlife Health. 2022 Apr-Jun;13(2):169-174. doi: 10.4103/jmh.jmh_178_21. Epub 2022 Sep 16. PMID: 36276630; PMCID: PMC9583372.
- 84.Reed SD, Guthrie KA, Newton KM, Anderson GL, Booth-LaForce C, Caan B, Carpenter JS, Cohen LS, Dunn AL, Ensrud KE, Freeman EW, Hunt JR, Joffe H, Larson JC, Learman LA, Rothenberg R, Seguin RA, Sherman KJ, Sternfeld BS, LaCroix AZ. Menopausal quality of life: RCT of yoga, exercise, and omega-3 supplements. Am J Obstet Gynecol. 2014 Mar;210(3):244.e1-11. doi: 10.1016/j. ajog.2013.11.016. Epub 2013 Nov 8. PMID: 24215858; PMCID: PMC3976276.
- 85. Jain AR, Sundarajan DP. Effectiveness of Tai Chi Exercise Program on Sleep, Quality of Life, and Physical Performance in Postmenopausal Working Women. J Midlife Health. 2022 Apr-Jun;13(2):127-132. doi: 10.4103/jmh.jmh_223_21. Epub 2022 Sep 16. PMID: 36276631; PMCID: PMC9583377.
- 86.Lunny CA, Fraser SN. The use of complementary and alternative medicines among a sample of Canadian menopausal-aged women. J Midwifery Womens Health. 2010 Jul-Aug;55(4):335-43. doi: 10.1016/j.jmwh.2009.10.015. PMID: 20630360.
- 87.Zhao PW, Wang YX, Niu JZ. [Mechanism of traditional Chinese medicine balancing Yin-Yang by targeting ERα/ERβ and its application in treatment of menopausal syndrome]. Zhongguo Zhong Yao Za Zhi. 2020 Aug;45(16):3770-3775. Chinese. doi: 10.19540/j.cnki.cjcmm.20200508.601. PMID: 32893569.
- 88.Genazzani AR, Monteleone P, Giannini A, Simoncini T. Pharmacotherapeutic options for the treatment of menopausal symptoms. Expert Opin Pharmacother. 2021 Sep;22(13):1773-1791. doi: 10.1080/14656566.2021.1921148. Epub 2021 May 13. PMID: 33980106.
- 89. Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar

- YA, Kaye AD, Viswanath O, Urits I, Boyer AG, Cornett EM, Kaye AM. Selective Serotonin Reuptake Inhibitors and Adverse Effects: A Narrative Review. Neurol Int. 2021 Aug 5;13(3):387-401. doi: 10.3390/neurolint13030038. PMID: 34449705; PMCID: PMC8395812.
- 90. Johnson A, Roberts L, Elkins G. Complementary and Alternative Medicine for Menopause. J Evid Based Integr Med. 2019 Jan-Dec;24:2515690X19829380. doi: 10.1177/2515690X19829380. PMID: 30868921; PMCID: PMC6419242.
- 91.Koçak DY, Varişoğlu Y. The effect of music therapy on menopausal symptoms and depression: a randomized-controlled study. Menopause. 2022 May 1;29(5):545-552. doi: 10.1097/GME.0000000000001941. PMID: 35486946.
- 92.Mikkelsen K, Stojanovska L, Polenakovic M, Bosevski M, Apostolopoulos V. Exercise and mental health. Maturitas. 2017 Dec;106:48-56. doi: 10.1016/j.maturitas.2017.09.003. Epub 2017 Sep 7. PMID: 29150166.
- 93.Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry. 2013 Apr 23;4:27. doi: 10.3389/fpsyt.2013.00027. PMID: 23630504; PMCID: PMC3632802.
- 94. Vetrani C, Barrea L, Rispoli R, Verde L, De Alteriis G, Docimo A, Auriemma RS, Colao A, Savastano S, Muscogiuri G. Mediterranean Diet: What Are the Consequences for Menopause? Front Endocrinol (Lausanne). 2022 Apr 25;13:886824. doi: 10.3389/fendo.2022.886824. PMID: 35546996; PMCID: PMC9084275.
- 95.Chen MN, Lin CC, Liu CF. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric. 2015 Apr;18(2):260-9. doi: 10.3109/13697137.2014.966241. Epub 2014 Dec 1. PMID: 25263312; PMCID: PMC4389700.
- 96.LeBlanc ES, Desai M, Perrin N, Wactawski-Wende J, Manson JE, Cauley JA, Michael YL, Tang J, Womack C, Song Y, Johnson KC, O'Sullivan MJ, Woods N, Stefanick ML. Vitamin D levels and menopause-related symptoms. Menopause. 2014 Nov;21(11):1197-203. doi: 10.1097/GME.0000000000000238. PMID: 24736200; PMCID: PMC4764124.

- 97. Pérez-López FR, Chedraui P, Pilz S. Vitamin D supplementation after the menopause. Ther Adv Endocrinol Metab. 2020 Jun 5;11:2042018820931291. doi: 10.1177/2042018820931291. PMID: 32551035; PMCID: PMC7278294.
- 98.Knight MG, Anekwe C, Washington K, Akam EY, Wang E, Stanford FC. Weight regulation in menopause. Menopause. 2021 May 24;28(8):960-965. doi: 10.1097/GME.000000000001792. PMID: 34033603; PMCID: PMC8373626.
- 99.Moyer AM, Miller VM, Faubion SS. Could personalized management of menopause based on genomics become a reality? Pharmacogenomics. 2016 May;17(7):659-62. doi: 10.2217/pgs.16.17. Epub 2016 May 4. PMID: 27142773.
- 100. Samami E, Shahhosseini Z, Elyasi F. The effects of psychological interventions on menopausal hot flashes: A systematic review. Int J Reprod Biomed. 2022 May 23;20(4):255-272. doi: 10.18502/ijrm.v20i4.10898. PMID: 35822187; PMCID: PMC9260068.
- 101. Chen TL, Chang SC, Huang CY, Wang HH. Effectiveness of mindfulness-based interventions on quality of life and menopausal symptoms in menopausal women: A metaanalysis. J Psychosom Res. 2021 Aug;147:110515. doi: 10.1016/j.jpsychores.2021.110515. Epub 2021 May 17. PMID: 34034137
- 102. Han A, Kim JY, Kwak-Kim J, Lee SK. Menopause is an inflection point of age-related immune changes in women. J Reprod Immunol. 2021 Aug;146:103346. doi: 10.1016/j. jri.2021.103346. Epub 2021 Jun 15. PMID: 34147765.
- 103. Rotem M, Kushnir T, Levine R, Ehrenfeld M. A psycho-educational program for improving women's attitudes and coping with menopause symptoms. J Obstet Gynecol Neonatal Nurs. 2005 Mar-Apr;34(2):233-40. doi: 10.1177/0884217504274417. PMID: 15781600.
- 104. Yazdkhasti M, Simbar M, Abdi F. Empowerment and coping strategies in menopause women: a review. Iran Red Crescent Med J. 2015 Mar 20;17(3):e18944. doi: 10.5812/ircmj.18944. PMID: 26019897: PMCID: PMC4441783.

How to cite this article: Anurogo D. The Art of Psychoneuroimmunology in Menopause Management. 2023 June 10; 4(6): 972-992. doi: 10.37871/jbres1758, Article ID: JBRES1758, Available at: https://www.jelsciences.com/articles/jbres1758.pdf