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Summary
An outbreak of pneumonia caused by a novel Coronavirus (2019-nCoV) 

is ongoing in China [1]. The disease caused by 2019-nCoV was recently 
named as COVID-19 by WHO. Although the case-fatality rate of COVID-19 
(about 2.3% up to now) is lower than SARS, they share many similarities 
[2,3]. Early studies have shown that increased pro-infl ammatory cytokines 
were associated with pulmonary infl ammation and extensive lung damage 
in SARS patients [4], while the latest report on COVID-19 showed that 
2019-nCoV infection lead to high amounts of both Th1 and Th2 cytokines 
[5]. Moreover, ICU patients had higher levels of GCSF, IP10, TNFα, MCP1, 
IL2, IL7, IL10, MIP1A, suggesting the cytokine storm was associated 
with disease severity [5]. Corticosteroid therapy was frequently gave 
as a combined regimen for possible benefi t by reducing infl ammatory-
induced lung injury. However, the drug is immunosuppressive and may 
delay viral clearance if given before viral replication is controlled [6], 
side-eff ects of corticosteroid also occurred in other cases [7]. Therefore, 
novel anti-infl ammatory molecules could be considered in the treatment 
of COVID-19.

Accumulating evidence suggests a protective role of Carbon 
monoxide (CO), which is produced from the catabolism of heme via 
Heme oxygenase (HO), in the lungs and many other organ systems [8]. 
The anti-infl ammatory properties of HO-1/CO has been demonstrated 
during pulmonary infl ammation and lung injury through inhibiting Th17 
cell-mediated immune response [9], suppressing NLRP3 infl ammasome 
activation [10], decreasing the release of segmented neutrophils 
from the bone marrow [11], aff ecting PMN migration and improving 
microvascular permeability [12], while the inducers or stimulators varies 
from OVA, sepsis, LPS and oxidative stress [9-13]. CO was defi ned as novel 
Nonsteroidal Anti-Infl ammatory Drugs (NSAIDs) [14] that accelerates 
resolution of infl ammation [15]. In this review, we will briefl y summarize 
the anti-virus eff ects of CO, with an emphasis on its interaction with 
purinergic signaling.

Purinergic Signaling in Virus Infection
Increased levels of extracellular nucleotides were detected during virus 

infection such as Respiratory Syncytial Virus (RSV), parainfl uenza virus and 
HIV [16-19]. By activating P2Y receptor-mediated signaling pathways, ATP 
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or UTP contributes to the accumulation of ions/fl uid 
in the respiratory tract and reduction of Alveolar Fluid 
Clearance (AFC) [19,20]. The impaired AFC was due to 
suppressed Na+ absorption and enhanced Cl- secretion 
mediated by ATP or UTP during virus infection [19,21]. 
Interestingly, SARS-CoV spike protein and envelop 
protein transfected human airway epithelial cells 
(H441) cells showed decreased amiloride-sensitive 
Na+ currents as well as ENaC protein level, indicating 
that lung edema in SARS infection may be partially 
due decreased levels and activity of ENaC at the apical 
surfaces of lung epithelial cells [22]. 

Apart from ion transport, purinergic signal also 
participates in host infl ammatory responses during 
virus infection. Calven J, et al. [23] reported that 
Rhinovirus (RV) infected Bronchial Smooth Muscle 
Cell (BSMC) supernatants exhibited elevated ATP, 
Blocking of purinergic signaling with suramin 
inhibited BSMC expression of IL-33. Taken together, 
nucleotides participates in airway virus infection, 
therefore, purinergic signaling appears to be a new 
pharmacological target against virus [24].

Anti-purinergic Effects of CO
Apart from its well-defi ned anti-infl ammatory 

eff ects, CO is also an emerging regulator of ion 
channels, modulating several classes of ion channels, 
including examples from calcium-activated K+ 
(BK(Ca)), voltage-activated K+ (K(v)) and Ca2+ channel 
(L-type) families, ligand-gated P2X receptors (P2X2 
and P2X4), tandem P domain K+ channels (TREK1) and 

the epithelial Na+ channel (ENaC) [25]. Though there’s 
no evidence demonstrating the direct eff ects of CO 
on Cl- channels, it can regulate Cl- transport in other 
ways. Extracelluar nucleotides are known to activate 
Cl- secretion through either [Ca2+]i or cAMP dependent 
pathway, contributing to the maintainess of Airway 
Surface Liquid (ASL) [26-30]. In lung diseases 
characterized by impaired oxygen and CO2 transport, 
an increase in the ASL height, which is often observed 
during lung infl ammation, might further aggravate 
the symptoms [31]. We’ve previously reported a 
inhibitory role of CO on P2Y receptor-mediated 
[Ca2+]i increase and IP3 formation [32]. Recently, 
by utilizing a simultaneous measurement combing 
electrophysiology and fl uorescent, we further 
demonstrated that CO signifi cantly suppressed UTP-
evoked [Ca2+]i increase and Cl- secretion (Figure 1). 
We also tested the eff ect of CO on another important 
Cl- secretion pathway by detecting intracellular cAMP 
and Cl- secretion simultaneously [33]. Data revealed 
a strong inhibitory eff ect of CO on either [Ca2+]i or 
cAMP dependent Cl- secretion. Given that CO also 
directly suppress ENaC [34], we hypothesize that CO 
is a functional inhibitor against nucleotides-induced 
ion transport, and therefore can be used to alleviate 
edema.

Apart from modulating purinergic signaling 
mediated ion transport, HO-1/CO also reduced 
nucleotide-induced pro-infl ammatory pathway 
activation, such as ERK1/2 MAPK as well as NF-κB, 
resulting in reduced IL-6 and IL-8 secretion [33,35]. 

Figure 1 Electrospun nanofi bers membrane of poly-ε-caprolactone visualization after 21 days of human Osteoblasts culture (Cells visualization 
in blue (nucleus /DAPI) and PLLFITC labelled nanofi bers in green): colonization and proliferation of osteoblasts into the nanofi bers membrane.
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Other Anti-virus Properties of CO 
CO exerts its protective eff ect partially through 

modulating ROS production derived from either 
NADPH oxidase or respiratory chain [36,37]. It was 
reported CO plays a protective role in acute lung 
injury [38]. In an infl uenza virus infected mouse 
model, transfection of HO-1 resulted in suppression 
of both pathological changes and intrapulmonary 
hemorrhage; enhanced survival of animals; and 
a decrease of infl ammatory cells in the lung [39]. 
Though CO could be produced by HO-1 in vivo, external 
CO can also induce the expression of HO-1, further 
strengthen the eff ect of CO [40,41]. We also found an 
increased expression of HO-1 induced by CO releasing 
molecule 3 (data not published). HO-1 was found to 
suppress hepatitis C virus and dengue virus replication 
in biliverdin dependent manner [42,43]. A latest study 
showed that pre-treatment of A549 alveolar cell and 
primary cultures of Human Tracheal Epithelial (HTE) 
cells with relative low dose of CO (100 ppm) resulted 
in reduced RV14 titers in the supernatants and RV 
RNA levels in A549 and HTE cells, CO exposure also 
increased the expression levels of Interferon (IFN)-
gamma mRNA and protein [44]. 

Coronavirus are enveloped virus that fuse with a 
host cell membrane in order to deliver their genome 
into the host cell. Specifi c cues in the endosomal 
microenvironment induce conformational changes 
in the viral fusion proteins leading to viral and host 
membrane fusion, acidifi cation of the endosomal 
microenvironment is required for successful fusion 
and release of the viral genome into the cytoplasm, 
such as SARS-CoV [45], NL63 [46] and MERS-CoV 
[47]. In dendritic cells, HO-1 derived CO reduced 
cargo transport, endosome-to-lysosome fusion, and 
antigen processing, dampening the production of 
peptide-MHC complexes on the surface [48]. Tardif 
V, et al. [49] also demonstrated that CO signifi cantly 
reduced the effi  ciency of fusion between late 
endosomes and lysosomes, therefore blocked antigen 
traffi  cking at the level of late endosome-lysosome 
fusion in dendritic cells. Whether HO-1/CO has similar 
eff ect in the airway epithelial cells during virus 
infection remains unknown. 

Additionally, CO is an important gaseous smooth 
muscle dilator [8] through activating PKG and/or 
BK(Ca) [50,51]. As previously described, COVID-19 
patients showed higher infl ammatory cytokine level 
[5], while many cytokines could facilitate bronchial 
smooth muscle contractility, including IL-17 [52], 

IL-4 [53], IL-13 [54], TNF-α [55]. Furthermore, 
some virus are capable of directly increase smooth 
muscle contraction. It was recently reported that RV 
infection lead to Airway Hyper Responsiveness (AHR) 
by increasing [Ca2+]i mobilization [56]. Therefore, 
CO therapy not only provides anti-infl ammation 
and anti-hypersecretion eff ect, but also alleviates 
airway narrowing. Together with its potential role 
in anti-virus infection, CO application may provide 
a comprehensive protective support to patients with 
COVID-19.

Safety and Clinical Trials of CO
The successful demonstration of CO-dependent 

protection in numerous animal models of disease 
has evoked the intriguing proposition that CO may be 
applicable as a molecular medicine in corresponding 
human disease states [57]. Exogenous administration 
of low concentration of CO by inhalation has been 
tested or currently in clinical trial to evaluate it’s 
potential to reduce infl ammation (NCT00094406), 
(NCT00122694), (NCT00531856). In a phase II clinical 
trial aimed to test the eff ect of inhaled CO on COPD, 
patients inhaled 2 hours of 100-125 ppm CO for 4 
consecutive days showed reduced sputum eosinophils 
and improved responsiveness to methacholine. The 
median COHb reached after the fourth inhalation 
session of 100 ppm CO was 2.6%, with a highest 
individual value of 3.5%. After 125 ppm inhalation the 
median COHb was 3.1%, with the highest individual 
value reaching 4.5% [58], below the levels of COHb 
“achieved” with smoking of 20 cigarettes•day-1 
where the 24-h average COHb levels reach 5.3% on 
average, with peaks >6% [59].

Remarks 
CO is a potential candidate for therapeutic 

application during virus infected lung diseases. The 
unique advantage of CO is that it is an electroneutral 
gaseous molecule, which can diff use easily across 
any membranes to exert its multiple function 
without interacting to unnecessary reactions like 
NO did [8,57,60,61]. Cytokine storm evoked by over-
activated immune responses is a lethal characteristic 
during virus infection [62-64], CO could be a 
substitution of corticosteroid to control immune 
reaction and infl ammation. CO can also alleviate ASL 
and alveolar fl uid overproduction through either 
directly modulating ion channels or interacting with 
purinergic signaling pathways. Furthermore, CO and 
HO-1 showed potential anti-virus replication and 
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inhibits endosome fusion to prevent virus release, 
which is worthwhile further studies. Additionally, 
CO also protects host from oxidative stress as 
well as smooth muscle hypercontractility. The 
comprehensive eff ects of CO makes it a possible 
therapeutic support for virus infection-induced lung 
disease including the prevalent COVID-19.
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