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Introduction
Ginger is a home remedy commonly used in food and drink mixes. In Islam, 

ginger is one of the plants enshrined in the Koran. Allah SWT said: "In Paradise 
you will be given a glass of (drink) mixed with ginger." (Quran surah al-Insan: 17). 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped 
virus with positive-sense single-stranded RNA in its genome, which has aff ected 
more than 212 countries and territories [1]. SARS-CoV-2 has four fundamental 
structural proteins, which are called Spike (S), nucleocapsid, envelope, and 
membrane proteins, as well as a number of accessory proteins, including the 
surface-exposed S protein, which plays a major role in binding of the virus to its 
target cells [2]. Protein S has a Receptor-Binding Domain (RBD) that binds to its 
receptor, Angiotensin-Converting Enzyme 2 (ACE2), which is expressed in various 
organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testicles, liver 
and brain [3,4]. Cerebral vascular endothelial cells express ACE2, which provides 
a direct pathway for SARS-CoV-2 entry into this organ [5]. Therefore, in addition 
to the respiratory system, SARS-CoV-2 can infect the digestive, cardiovascular, 
urogenital, and nervous systems [3,6].

Symptoms of COVID-19, including dyspnea, fever, nonproductive cough, 
pneumonia, fatigue, and myalgia , emerge after an incubation stage of 2 to 14 days 
[7,8]. Clinically, the symptomatic types of COVID-19 include the following: the mild 
form (80.0%), which exhibits minor, nonspecifi c signs that do not progress to more 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affects other systems, 
including the digestive, circulatory, urogenital, and even the central nervous systems, as its receptor 
Angiotensin-Converting Enzyme-2 (ACE-2) is expressed in several organs, such as lungs, intestine, 
heart, esophagus, kidneys, bladder, testes, liver and brain. Different mechanisms, in particular, 
massive virus replication, extensive apoptosis and necrosis of lung-related epithelial and endothelial 
cells, vascular leakage, hyperinfl ammatory responses, overproduction of proinfl ammatory mediators, 
cytokine storm, oxidative stress, the downregulation of ACE2 and impairment of the renin-angiotensin 
system contribute to the pathogenesis of COVID-19. Currently, COVID-19 is a global pandemic with 
no specifi c antiviral treatment. The favorable abilities of ginger were indicated in patients suffering 
from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory 
distress, liver diseases, and primary dysmenorrhea. Ginger or its compounds exhibited strong anti-
infl ammatory and antioxidant infl uences in numerous animal models. This review provides evidence 
regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, 
anti-infl ammatory, antioxidant, and immunomodulatory impacts in an attempt to consider this plant 
as an alternative therapeutic agent for the treatment of COVID-19.
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severe disease; the moderate form (15.0%), which shows 
localized pulmonary infl ammation and pneumonia with or 
without hypoxia; and severe infection (5.0%), exhibiting 
systemic hyperinfl ammation and acute Respiratory Distress 
Syndrome (ARDS) with risk of fatal outcome in critical 
cases (1-2%) [9]. Various pathways, in particular, massive 
virus replication, extensive apoptosis and necrosis of 
lung-associated epithelial and endothelial cells, vascular 
leakage, hyperinfl ammatory responses, overproduction 
of proinfl ammatory mediators, cytokine storm, oxidative 
stress, ACE2 downregulation, and impairment of the renin-
angiotensin system all contribute to the pathogenesis of 
COVID-19 [10,11]. 

Currently, there are no specifi c therapies, such as 
relevant antiviral drugs, available for COVID-19. Herbs 
can provide valuable sources of compounds that have 
immunomodulatory, anti-infl ammatory, antioxidant, and 
antiviral properties, exerting benefi cial eff ects on systems 
aff ected by viruses [12]. Experimentally and clinically, ginger 
(the rhizome of Zingiber offi  cinale) has exhibited numerous 
therapeutic activities, including anti-infl ammatory, 
antioxidant, immunomodulatory, antimicrobial, 
antifungal, anticancer, neuroprotective, antimigraine, 
hepatoprotective, hypocholesterolemic, cardiovascular 
protective, respiratory protective, antiobesity , antidiabetics 
, anti-nausea and anti-emetics [13]. Ginger also shows direct 
antiviral eff ects [14-20], and may have a protective role 
against ARDS [20,21], which is the leading cause of mortality 
in patients with severe COVID-19. Therefore, ginger may 
have benefi cial impacts on many organs that are aff ected 
by SARS-CoV-2 infection. This review provides evidence on 
the potential eff ects of ginger against SARS-CoV-2 infection 
and highlights its antiviral, anti-infl ammatory, antioxidant, 
and immunomodulatory impacts in an eff ort to consider this 
plant as an alternative therapeutic agent for the treatment of 
COVID-19.

Ginger Bioactive Components
Ginger contains several components, including 

about 3.0%-6.0% fatty oil, 9.0% protein, 60.0%-70.0% 
carbohydrates, 3.0%-8.0% crude fi ber, about 8.0% ash, 
9.0%-12.0 % water and approximately 2.0% volatile oil 
[22]. Chemically, ginger contains more than 400 diff erent 
compounds, however, the pharmacological eff ects of ginger 
are largely attributed to its terpenes and phenolic compounds 
[22,23]. Terpene ingredients in ginger include zingiberene, 
bisabolene, farnesene, sesquifellandrene, limonene, 
cineol, linalool, borneol, geranium, and cucumene [22]. 
Terpenes derived from ginger have various pharmacological 
properties such as anticancer eff ects, antioxidants, anti-
infl ammatory, antiviral, antibacterial, antidiabetic, 
antihyperalgesic, gastroprotective and neuroprotective [22]. 
Phenolic compounds derived from ginger include gingerols, 
paradols, shogaols, and zingerone. Ginger also contains 
other compounds related to gingerol or shogaol, such as 
1-dehydrogynedone, 6-gingerdione, and 10-gingerdione, 

as well as gingerdiols and diarreptanoids [23]. The main 
pungent ingredients in fresh ginger are gingerols. Although 
6-gingerol is the most abundant gingerol in ginger, other 
types of gingerols, such as 8-, 10-, and 12-gingerols, as 
well as 6-gingerdione, are also present [22]. Gingerols 
have anticancer, anti-infl ammatory, antioxidant, 
antiangiogenesis, antimetastasis, antimicrobial, antifungal, 
neuroprotective, antiemetic and antihyperlipidemic [22].

When ginger is dehydrated by drying or cooking, 
6-gingerol is converted to 6-shogaol, which is more stable 
and has stronger pharmacological eff ects than 6-gingerol 
[24]. Shogaol has antioxidant, anti-infl ammatory, 
anticancer, antiemetic, and neuroprotective eff ects [22]. 
6-paradol is synthesized from 6-shogaol by microbial 
biotransformation through reduction of the double bond 
in shogaol that exhibits anticancer, anti-infl ammatory, 
cardioprotective, and neuroprotective eff ects.

Zingerone is not found in fresh ginger, but can be 
synthesized from gingerols through reverse aldolization 
when ginger is dried, heated, or roasted [25]. Zingerone 
exhibits several properties, such as anti-infl ammatory 
eff ects, antidiabetics, antioxidants, antidiarrheals, 
antispasmodics, antihiplipidemia, anticancer, anemetics, 
anxiolytics, antithrombotics, protectors of radiation and 
antimicrobials [25].

Antiviral Properties of Ginger
Fresh ginger exerts potent antiviral eff ects against 

Human Respiratory Syncytial Virus (HRSV) and rhinovirus, 
supporting its usefulness in treating viral respiratory tract 
infections [14]. Unlike dry ginger, the aqueous extract 
of fresh ginger inhibits the binding and penetration of 
HRSV to human laryngeal lung carcinoma cell lines, when 
administered 1–2 h before inoculation of the virus [14]. It has 
been proposed that fresh ginger may block viral attachment 
and penetration into host cells through interaction with 
G and F proteins [14,15]. Fresh ginger also stimulates 
Interferon (IFN)-α secretion and IFN-β from infected 
epithelial cells [14]. Therefore, fresh ginger may inhibit viral 
replication in the lower parts of the respiratory tract [14].

The existence of several terpenes with antirinoviral 
activity in the alcoholic extract of ginger has been 
demonstrated [16]. The aqueous extract of ginger also 
prevents the replication of the H9N2 avian infl uenza virus in 
the embryo of chicks [17]. In vitro experiments indicated that 
gingerenone inhibits the replication of the various infl uenza 
A virus subtypes (H1N1, H5N1, and H9N2) [19]. Infl uenza-A 
virus replication is also reduced in the lungs of mice treated 
with gingerenone [19]. In addition, some ginger-derived 
components exhibit anti-infl uenza activity and may prevent 
swine fl u infection [26]. Zingiber montanum extract also 
reduces the infectivity of the H5N1 avian infl uenza virus in 
vitro [18].

The aqueous extract of ginger decreases the infectivity 
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of feline calicivirus in virus pretreatment, co-infection 
treatment, post-infection treatment, but not in target 
cell pretreatment [27]. Ginger extract contains a type of 
propanediol that has antiviral properties [27]. Furthermore, 
in vitro tests using a Vero cell line revealed that the aqueous 
extract of ginger shows powerful anti-chikungunya activity 
[28].

Ginger Essential Oil (GEO) inactivates Caprine 
Alphaherpesvirus-1 (CpHV-1) up to 100% by destroying 
the virus envelope and related structures required for virus 
attachment and entry into host cells [29]. GEO reduces HSV-
2 activity by more than 90.0% when the virus is preincubated 
with ginger oil [30]. No inhibitory impact was found when 
GEO was added to target cells before infection with HSV-2 
and CpHV-1 or after virus binding. Thus, GEO aff ects HSV-2 
and CpHV-1 primarily prior to viral attachment, perhaps by 
disrupting virus envelope [29,30].

Results of in vitro experiments indicate that gingerol 
directly inactivates hepatitis A and Tulane viruses [31]. 
In addition, gingerol reduces the infectivity of murine 
norovirus-1 and inhibits replication of human norovirus in 
an infected cell line [32]. Zerumbone, a compound of Zingiber 
zerumbet, also acts as a powerful suppressor of an Epstein-
Barr virus tumor promoter induced by tetradecanoylphorbol 
acetate [33].

In a clinical trial, the administration of ginger extract 
to patients infected with the Hepatitis C Virus (HCV) 
decreased the virus load, reduced the levels of α-fetoprotein 
and decreased the levels of functional enzymes related to 
the liver, such as alanine aminotransferase and aspartate 
aminotransferase [34].

In addition to direct antiviral impacts, ginger can boost 
antiviral innate immunity. IFNs are the fi rst line of protection 
against viral infections, and an in vitro analysis indicated that 
gingerols promote IFN-γ secretion from activated T cells 
[35,36]. In addition, fresh ginger extract stimulates IFN-α 
and IFN-β secretion from HRSV-infected epithelial cells 
[14]. Aqueous extract of ginger also suppresses infl uenza 
virus replication through induction of Tumor Necrosis 
Factor α (TNF-α) production by macrophages [37].

Evidence of the Potentials of Ginger 
against COVID-19

The SARS-CoV-2-related Papain-like Polyprotein 
a/b (PP a/b) at diff erent sites producing several proteins 
required for viral survival and replication [38]. SARS-CoV-
2-related PLpro also interferes with the virus IFN type I 
response [38]. Therefore, PLpro can be considered as a 
suitable target of anti-SARS-CoV-2 drugs to eff ectively 
prevent virus replication and survival virus [39]. Molecular 
docking approaches indicated that 8-gingerol, 10-gingerol, 
6-gingerol, and another class of ginger ingredients potently 
inhibit PLpro [40]. Consistent with molecular docking 

analyses, 6-gingerol was also found to exhibit high binding 
affi  nity with a number of virus proteins (major protease, 
SARS-CoV3C-like molecule, and cathepsin K) that are 
essential for the SARS-CoV-2 replication [41]. 6-gingerol 
also binds to protein S and several RNA-binding proteins 
of SARS-CoV-2 [42]. Docking analyzes also revealed that 
gingerol, geraniol, shogaol, zingiberene, zingiberenol, 
and zingerone interact with key residues in the catalytic 
domain of MPro [43]. Meanwhile, geraniol, shogaol, 
zingiberene, zingiberenol, and zingerone can interfere with 
S-ACE2 protein binding [43]. Docking studies indicated 
that 6-gingerol, 8-gingerol, 10-gingerol, 10-shogaol, 
8-paradol, and 10-paradol interact with the virus protein 
S RBD, as well as with human ACE2, so they can inhibit the 
spread of SARS-CoV-2 [44]. The results of a computational 
analysis indicate that a ginger-derived terpene, namely 
sesquifellandrene, binds to protein S and thus interferes 
with protein S-ACE2 interaction [45]. It is obvious that these 
computational docking studies must be supported by in vitro 
and in vivo observations.

Results from a study in Saudi Arabia indicate that ginger 
consumption by COVID-19 patients increased from 36.2% 
before infection to 57.6% after infection. The proportion 
of patients hospitalized for COVID-19 treatment was also 
lower among ginger users (28.0%) than among non-users 
(38.0%) [46]. In a study from Bangladesh, some cases of 
patients cured of COVID-19 who consumed home medicines 
containing ginger in mixtures of various herbs with or 
without the use of additional treatments were described 
[47]. According to the results of a Tunisian study, the 
treatment of some cases of COVID-19 with home medicines 
containing ginger in combination with other herbs reduced 
the symptoms of the disease [48]. In some parts of Africa, 
acclaimed remedies containing ginger in mixtures of various 
herbs have also been used for the management of COVID-19 
[49]. Results from a clinical trial study from Iran indicate 
that a combination therapy with ginger and echinacea in 
suspected COVID-19 outpatients attenuated some of their 
clinical symptoms (shortness of breath, cough, and muscle 
pain) compared to those treated with a standard protocol 
using hydroxychloroquine, alone [50]. In addition, the 
hospitalization rate in the intervention group (2.0%) was 
lower than that in the control group (6.0%) [50]. Results 
from a randomized controlled study showed that patients 
with ARDS who were fed an enteral diet enriched with ginger 
extract for 21 days exhibited higher oxygenation , lower 
serum concentrations of IL-1, IL-6, and TNF-α, and spent 
less time on mechanical ventilation compared to the control 
group. However, organ failure, barotrauma, and mortality 
rate occurred similarly in patients treated with ginger and in 
the control group [20]. Ginger may have benefi cial impacts 
on patients suff ering from pulmonary complications such as 
ARDS, pulmonary fi brosis, and pneumonia, as well as sepsis, 
all of which are signs seen in COVID-19 [51]. Overall, the 
above evidence indicates that more high-quality controlled 
trials are needed to confi rm the eff ectiveness and safety of 
ginger or its compound in patients with COVID-19. A clinical 
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trial is underway in Iran, in which a total of 84 COVID-19 
patients were randomized into two groups each with 42 
participants, including intervention and control groups. 
The intervention group will be given the standard treatment 
protocol plus 1,000 mg ginger three times a day for seven 
days, while the control group will be given the standard 
treatment plus placebo tablets at the same dose and time 
[52].

Anti-Infl ammatory, Immunomodulatory 
and Antioxidant Potentials of Ginger
Potentials of ginger to modulate neutrophil 
responses

COVID-19 activation and degranulation may promote 
infl ammation and hemorrhagic lesions in the pulmonary 
system of COVID-19 patients [53]. Lymphopenia and an 
increased neutrophil-to-lymphocyte ratio also occur in 
patients with severe COVID-19 [54]. COVID-19 patients 
exhibited high circulating levels of calprotectin (a marker 
of neutrophil activation), and its amounts were higher in 
patients who had progressed to the severe form of the disease 
[55]. During viral respiratory infections, the amounts of CXC 
Motif Chemokine Ligand (CXCL8), which is a neutrophil-
recruiting chemokine, in airway secretions were positively 
related to neutrophil count, amount of elastase derived 
from neutrophils and clinical scores [56,57]. Activated 
neutrophils showed NETosis, autophagy, and generation of 
Reactive Oxygen Species (ROS) leading to lung injury, thus 
promoting ARDS [56]. Interaction of viral TLR4 triggers 
netosis consisting of large, network-like, extracellular 
structures [56,58].

In an experimental infl ammatory model, aqueous 
extract of ginger dose-dependently attenuates neutrophil 
infi ltration and activation as assessed by Myeloperoxidase 
(MPO) production [59]. Aqueous extract of ginger also 
reduced leukocyte infi ltration in an animal model of allergic 
asthma [60]. GEO potently suppresses ROS production by 
human neutrophils stimulated by Phorbol Myristate Acetate 
(PMA) [61]. In a mouse model of Acute Lung Injury (ALI), 
zingerone pretreatment decreased lung histopathologic 
changes, alveolar hemorrhage, as well as neutrophil 
accumulation and MPO activity [21]. Ginger extract 
inhibits CXCL8 production by fi broblast- like synovial cells 
collected from patients with Rheumatoid Arthritis (RA) and 
osteoarthritis [62].

Potentials of ginger to modulate macrophage 
responses

SARS-CoV-infected human macrophages express CC 
Chemokine Ligand (CCL2), CCL3 (macrophage infl ammatory 
protein 1α, MIP1α), CCL8 (MCP2), CCL7 (MCP3), and CXCL10 
[63,64]. Treatment of human monocytes with purifi ed 
protein S from SARS-CoV promotes the expression of CCL15, 
CCL16, CCL19, CXCL10, and CXCL11 [65,66]. Similarly, 
human macrophages infected with Middle East respiratory 

syndrome coronavirus (MERS-CoV) express CCL2, CCL3, 
CCL5, interleukin (IL-2), and IL-3 [67]. SARS-CoV-2 can 
infect various subsets of monocytes and macrophages 
through ACE2-related and/or non-ACE2-related pathways 
[68]. SARS-CoV-2-infected monocytes/macrophages 
secrete large concentrations of proinfl ammatory mediators 
that cause local organ infl ammation and cytokine storms. 
Elevated amounts of IFN-γ, TNF-α, Granulocyte-Colony 
Stimulating Factor (G-CSF), Granulocyte-Macrophage 
Colony-Stimulating Factor (GM-CSF), CXCL8, CXCL10, 
IL-1β, IL-2 were observed, IL-7, IL-9, IL-10, IL-17, MCP1, 
MIP1A and MIP1B in patients with COVID-19, especially 
those who required ICU services [69]. Both localized organ 
infl ammation and cytokine storm play a critical role in 
exacerbating SARS-CoV-2-related consequences [68]. 

Elevated amounts of neutrophil recruitment chemokines 
(including CCL7 and CCL2, CXCL10, CXCL8, CXCL1, and 
CXCL2) and monocyte/lymphocyte recruitment chemokines 
(such as CCL20, CCL8, CCL7, CCL4, CCL3, CCL2, as well 
as CXCL11 and CXCL6) in Bronchoalveolar Lavage Fluid 
(BALF) samples collected from patients with COVID-19 
[9]. Chemokines recruit leukocytes in the lungs, thus 
playing an essential role in the development of pulmonary 
abnormalities [9]. Patients suff ering from severe and 
moderate COVID-19 show higher frequencies of M1-like 
macrophages in BALF and higher amounts of circulating 
CXCL9, CXCL10, and CXCL11 than healthy individuals [70].

Two major subsets of macrophages, including M1 and M2 
macrophages, generate large amounts of proinfl ammatory 
mediators (such as TNF-α, IFN-γ, IL-6, IL-12, Nitric oxide 
(NO), and ROS) and anti-infl ammatory cytokines (especially 
IL-10, TGF-β and il-1 receptor antagonist), respectively 
[13,71]. Higher proportions of FCN1- and FCN1 + lo SPP1 
macrophages (type M1) were detected in BALF samples 
collected from patients with severe COVID-19, whereas 
BALF samples collected from patients with COVID-19 
and healthy individuals had an increased number of 
FABP4 macrophages (type M2) [70]. In animal models of 
Respiratory Syncytial Virus (RSV) infection, diff erentiation 
of lung macrophages to an M1-like phenotype limits virus 
replication [72]. Strong depletion of M1-like macrophages 
occurs during SARS and infl uenza A infections, supporting 
viral expansion [72]. Inappropriate activation of 
M2 macrophages leads to pulmonary fi brosis, while 
hyperactivation of M1 macrophages exacerbates damaging 
infl ammatory responses [73,74]. However, mitigation of the 
immunopathological consequences linked to RSV requires 
a balanced induction of M1- and M2-like macrophages 
[72,75].

Ginger extract [76-79] shogaols including 6, 8, 
and 10-shogaol, [79-82] gingerols including 8- and 
10-gingerol [79], 1-dehydro-10-gingerdione [80], and 
6-dehydrogynedone [83] suppress the production of 
TNF-α, IL-1β, IL-6, IL-12, MCP-1, RANTES, Cyclooxygenase 
(COX)-2, inducible Nitric Oxide Synthase (iNOS), and NO in 
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Lipopolysaccharide (LPS) -induced mouse macrophages . 
Ginger extract, 6-gingerol, and 6-shogaol downregulate IL-
6, IL-8, PGE2, and iNOS in an LPS-stimulated human colonic 
epithelial cell line through downregulation of Nuclear Factor 
kappa B (NF-κB) [84]. Zerumbone prevents NF-κB activation 
and downregulates COX-2, IL-6, TLR2, TLR4, and MyD88 in 
LPS-activated human macrophages [85].

In a mouse model with fi bromyalgia, feeding powdered 
ginger ameliorates the symptoms of the disorder and 
decreases the production of IL-1β, NO, Thromboxane B2 
and PGE2 by macrophages [86]. In an animal periodontitis 
model, treatment with 6-shogaol reduces macrophage 
number, prevents bone destruction, inhibits osteoclast 
maturation and activation and downregulates IL-1β, TNF-α 
and ROS [87]. Similarly, 6-gingerol prevents osteoclast 
diff erentiation and represses IL-1-induced PGE2 synthesis 
in mouse osteoblasts [88]. Moreover, zingerone restores 
renal functions and decreases the generation of TNF-α, IL-
1β, IL-6 and ROS in animal models of nephropathy [89,90]. In 
addition, zerumbone downregulates TNF-α, IL-1β, and IL-6 
in an animal neuropathic pain model [91]. Further, gingerols 
decreased the serum quantities of TNF-α, IL-1β, and IL-6 
in rats with ulcerative colitis [92]. Aforementioned studies 
indicate that ginger and its components exert suppressive 
impacts on the M1 macrophage-related infl ammatory 
parameters.

Concerning the chemokines, ginger extract 
downregulates CXCL10 in a human macrophage cell line 
[93]. 6-shogaol reduces CCL17 generation in a model 
of allergic dermatitis [94]. CCL22 and its receptor CCR4 
are downregulated by ginger extract in experimental 
autoimmune Encephalomyelitis (EAE) mice [95]. Ginger 
extract also dampens the production of CCL2 and CCL5, 
thus decreasing monocyte/macrophage migration [59,96]. 
In addition to chemokines, cell adhesion molecules play 
a major role in leukocyte migration to infl amed organs. 
Zerumbone and gingerenone inhibit the expression of 
ICAM-1 and VCAM-1 [97,98].

IL-6 and TNF-α are two powerful players among the 
cytokine storm associated with COVID-19 [99]. Ginger 
consumption reduces circulating amounts of TNF-α, IL-
1, and IL-6 in patients with osteoarthritis [100], and in 
endurance runners [101]. In addition, oral administration 
of ginger in subjects with type 2 diabetes reduces serum 
concentrations of TNF-α, IL-6, and C-reactive protein 
[102]. Collectively, ginger and its bioactive ingredients 
eff ectively modulate macrophage activation and attenuate 
the generation of proinfl ammatory mediators that lead to 
mitigation of infl ammatory responses. As a result, they can 
relieve infl ammation related to COVID-19.

Potentials of ginger to modulate TLR-
mediated responses

TLRs are components of innate immunity that recognize 
ligands derived from microbes called Pathogen-Associated 

Molecular Patterns (PAMPs) and ligands of endogenous 
origin called Danger-Associated Molecular Patterns (DAMPs) 
[103,104]. Single-stranded RNA, double-stranded RNA, CpG 
DNA, lipoproteins, peptidoglycans, Lipopolysaccharides 
(LPS), and fl agellin are examples of PAMPs [103,104]. Heat 
Shock Protein (HSP) [70], HSP90, and High Mobility Group 
Box 1 (HMGB1) are examples of DAMPs that are released 
after cell damage [104].

Each TLR molecule has an extracellular area that 
recognizes PAMP/DAMP and an intracellular part consisting 
of the Toll/IL-1 Receptor (TIR) domain, which initiates 
signaling [103,104]. Following TLR ligation, MyD88 binds 
to the intracellular TIR domain and subsequently recruits 
an IL-1 Receptor-Associated Kinase (IRAK) complex [105]. 
The MyD88-IRAK4 interaction phosphorylates IRAK4 and 
then attracts IRAK1, IRAK2, and Tumor Necrosis Factor 
Receptor-Associated Factor 6 (TRAF-6) to construct a 
transient MyD88-IRAKs-TRAF-6 complex [106]. TRAF-6 is 
subsequently released into the cytoplasm, where it creates 
a signaling complex with TGF-Activated Kinase 1 (TAK1), 
TAK1-binding protein (TAB) 1, TAB2, and TAB3 [107].

This signaling complex activates the IKK complex 
contributing to the degradation of an inhibitor of NF-κB 
called IκB [106]. NF-κβ is activated and migrates to the 
cell nucleus, where it initiates gene expression of several 
proinfl ammatory parameters, such as TNF-α, IL-1β, IL-
6, IL-8, IL-12, IL-17, IFN-γ and iNOS [108]. TAK1-induced 
activation of MAPK and AP-1 also increases cytokine gene 
expression [109]. In plasmacytoid Dendritic Cells (DCs), a 
myeloid diff erentiation factor 88 (MyD88)-related pathway 
upregulates type I IFNs through IRAK1-stimulated activation 
[109].

All TLRs except TLR3 require MyD88 to initiate signaling 
[110]. TlR3 and TLR4 use TLR3 and TLR4 to initiate β signaling 
and recruit TRAF6 and TRAF3. TRAF6 then triggers the 
activation of RIP kinase-1 and NF-κB, while TRAF3 triggers 
type I IFN production by inducing TBK-1-related activation 
of IRF3 [106,109].

IL-6 and TNF-α as the most eff ective players in the 
COVID-19-associated cytokine storm are produced through 
TLR signaling [111]. The SARS-CoV S molecule uses TLR2 
to promote IL-8 production in monocytes through NF-κB 
activation [66]. The SARS-CoV-2-TLR interaction causes 
the release of pro-IL-1β which ultimately converts to active 
IL-1β and contributes to lung infl ammation [112]. According 
to molecular docking, the SARS-CoV-2 S molecule can 
interact with TLR1, TLR4, and TLR6; however, the TLR4-S 
protein interaction shows the strongest affi  nity compared to 
TLR6 and TLR1 [113]. TLR4 may be important in recognizing 
SARSCoV2 molecular patterns and inducing infl ammatory 
responses in COVID-19 [113]. Therefore, targeting the 
S-TLR4 protein interaction may provide new approaches for 
the treatment of COVID-19. TLR5 may bind to a candidate 
COVID-19 vaccine [114].
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Ginger derivatives such as 6-shogaol suppress TRIF-, 
MyD88-, and IKK-linked signaling in murine macrophages, 
thereby downregulating the activities of TBK1, IRF3, and 
NF-κB [81,82]. In addition, 6-shogaol inactivates ERK1/2 
and prevents the expression of MyD88, NOS2, and Matrix 
Metalloproteinase 2 (MMP2) and MMP9 in LPS-treated 
chondrocytes [96]. 6-shogaol protects microglia against 
LPS-induced toxicity by inhibiting the expression of MAPK, 
NF-κB, NOS, and COX-2.[115] TLR4 dimerization, NF-κB 
induction, and COX-2 expression are also prevented by 
6-shogaol [116]. In animals with oral carcinoma, 6-shogaol 
treatment confers anticancer impacts through mitigation of 
AP-1 and NF-κB activity, as well as downregulation of IL-1, 
TNF-α, IL -6 and COX-2 [117].

Furthermore, zingerone was found to inhibit several 
elements that contribute to TLR-related signaling, such as 
TRIF, MyD88, MAPK, IRF-3, and NF-κB in various animal 
models [118,119]. Zingerone decreases HMGB1 release 
from stimulated and damaged cells, and downregulates 
TLR2, TLR4, and RAGE that act as HMGB1 receptors [120]. 
Zingerone decreases HMGB1-induced NF-κB and ERK1/2 
activation and downregulates HMGB1-induced adhesion 
molecule, as well as decreases neutrophil migration [120].

1-Dehydro-10-gingerdione suppresses LPS binding to 
a TLR4-related co-receptor called MD2, downregulates 
IL-6, iNOS, and COX-2, and prevents NF-κB activation in 
macrophages induced by LPS [121,122]. NF-κB induction 
and translocation to the cell nucleus are also prevented by 
6-dehydrogindione [83]. Galangin, a fl avonoid derived 
from ginger, has antioxidant, anti-infl ammatory, and anti-
apoptotic activities [123]. In a model of nephrotoxicity, 
galangin improves renal function and downregulates NF-κB, p38 MAPK, ERK1/2, and JNK [123].

Taken together, ginger and its bioactive ingredients 
may mitigate infl ammation by decreasing DAMPs released 
from injured cells, preventing TLR ligation, inhibiting 
TLR-mediated signals, and ultimately downregulating 
infl ammation-promoting parameters.

Potentials of ginger to downregulate 
infl ammasome-induced responses

Infl ammasomes are amplifi ers of infl ammation 
consisting of a sensor molecule that recognizes a stimulator, 
an adapter element (called ASC), and an eff ector component 
called pro-caspase-1 [124]. Various types of DAMPs and 
PAMPs activate infl ammasomes, resulting in cleavage of 
pro-IL-1β and pro-IL-18 into their active forms, as well as 
pyroptosis that allows release of IL-1β and IL-18 [124,125].

The NOD-Like Receptor 3 (NLRP3) infl ammasome is 
induced during some pulmonary viral infections, such as 
RSV and infl uenza A virus infections [126,127]. Sustained 
NLRP3 infl ammasome induction causes massive discharge 
of DAMP (such as HMGB1), infi ltration and stimulation 

of macrophages and neutrophils, massive generation 
of cytokines (such as IFN-γ, IL-1β, IL-2, IL-6, IL-17, 
TNF-α, G-CSF, GM-CSF, CCL2, CCL3 and CXCL10) and 
fi brosis [128,129]. In infl uenza virus infection, a positive 
association has been suggested between HMGB1 amounts 
and severity of pneumonia, as well as ALI-related death, 
which can be blocked by HMGB1-specifi c antibody [128,130]. 
NLRP3 infl ammasome -defi cient mice showed lower lung 
lesions and a higher survival rate after infl uenza infection, 
suggesting that this infl ammasome and IL-1β contribute to 
lung infl ammation and ARDS [131].

In a mouse model of respiratory viral infection, 
suppression of the NLRP3 infl ammasome early in the disease 
increased mortality, whereas its inhibition during peak 
infection protected mice [132]. Therefore, infl ammasomes 
may have protective and detrimental impacts during various 
phases of a virus infection.

COV-derived viroporin 3a directly stimulates the NLRP3 
infl ammasome [133]. The viroporin 3a gene has been found 
in the SARS-CoV-2 genome, suggesting that SARS-CoV-2 
may similarly trigger the NLRP3 infl ammasome [134]. The 
SARS-CoV-related proteins E, ORF3a, and ORF8b induce the 
NLRP3 infl ammasome [135-137] and their sequences have 
also been mapped to the SARS-CoV-2 genome, so they may 
play a role in the pathogenesis of SARS-CoV-2 [138].

After inhalation, SARS-CoV-2 activates P2RX7, which 
stimulates the NLRP3 infl ammasome, causing pyroptosis and 
the release of IL-18 and IL-1 [138]. TNF-α and IL-1β secreted 
by alveolar macrophages cause cell death and DAMP release, 
leading to excessive activation of the NLRP3 infl ammasome, 
resulting in a positive infl ammatory feedback loop [138]. 
Damage to type II alveolar epithelial cells expressing ACE2 
also triggers the NLRP3 infl ammasome [138]. The elevation 
of angiotensin II may be caused by SARS-CoV-2-mediated 
downregulation of ACE2, which may lead to activation of the 
NLRP3 infl ammasome [68,139]. Angiotensin II-mediated 
activation of the NLRP3 infl ammasome can promote smooth 
muscle cell expansion vascular, vascular remodeling, 
hypertension and pulmonary fi brosis [138,140,141]. Irregular 
stimulation of the NLRP3 infl ammasome reinforces the 
cytokine storm, exacerbating the severity of COVID-19 [134].

Th17 cell activation, neutrophil infi ltration, HMGB1 
release, macrophage activation, and cytokine storm are the 
results of NLRP3 infl ammasome hyperactivation [134]. The 
NLRP3 infl ammasome exacerbates the severity of MERS and 
SARS while promoting ARDS and cytokine storm, indicating 
that this infl ammasome has an important role in the 
pathogenesis of COVID-19 [138].

Suppression of NLRP3 infl ammasome downstream 
elements, such as caspase-1, il-1, and IL-18, can be used 
to control COVID-19 related hyperinfl ammation [134]. 
Due to the high infl ammatory capacity of infl ammasomes, 
they are suitable therapeutic candidates for the treatment 
of infl ammatory abnormalities. Some ginger- derived 
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phytochemicals suppress NLRP3 and IL-1β infl ammasome 
expression. Pretreatment of a shogaol-stimulated human 
macrophage cell line prevents conversion of pro-caspase-1 
to active caspase-1 [142]. Gingerols and shogaols also 
downregulate the NLRP3 infl ammasome and IL-1β in LPS-
induced human macrophages [142]. In vitro experiments 
have revealed that high glucose concentrations initiate 
calcifi cation in human vascular smooth muscle cells through 
upregulation of the infl ammasome-IL-1β NLRP3 axis [143]. 
6-shogaol reduces calcifi cation through attenuation of ROS 
production and downregulation of the NLRP3 infl ammasome 
[143]. Ginger - derived Exosome-Like Nanoparticles (ELNs) 
also inhibit NLRP3 infl ammasome assembly, IL-1β and IL-
18 production, as well as pyroptosis in mouse macrophages 
[144]. ELN-related suppressive activity was largely 
attributed to its lipid fraction [144].

Potential ginger to downregulate 
oxidative stress

Oxidative stress (SG) is a prooxidant-antioxidant 
imbalance that results from the excessive production of 
reactive intermediates such as ROS, Reactive Nitrogen 
Species (RNS), and free radicals. It damages DNA, proteins, 
lipids, and polysaccharides, disrupting cellular physiological 
functions, eventually leading to cell death [145]. SG 
also contributes to infl ammatory responses through 
the activation of NF-κB [146]. In addition, NO provokes 
the expression of COX-2, promoting the generation of 
prostaglandin E2 (PGE2) [146].

Nuclear erythroid factor 2-related factor 2 (Nrf2) has 
cellular protection mechanisms against GS. Nrf2 maintains 
cellular homeostasis by triggering the production of various 
antioxidant factors such as NADPH-quinone oxidoreductase, 
Glutathione Synthetase (GSH-S), heme oxygenases, and the 
enzyme thioredoxin [145].

Viral infections generally deplete antioxidant stores 
and enhance oxidant production [145]. A number of 
pulmonary viral infections promote ROS generation as a 
result of leukocyte recruitment to the site of infection. ROS 
overproduction coupled with antioxidant depletion increases 
viral replication and virus-associated complications [147]. 
Respiratory viral infections have been linked to repression of 
Nrf2 pathways and/or activation of NF-κB-related signaling, 
which cause infl ammation and oxidative injury [147,148].

Like other RNA viruses, SARS-CoV2 can trigger GS [149]. 
The severity and mortality risks of COVID-19 increase in 
old age when antioxidant degradation occurs along with 
prooxidant accumulation [150,151]. In elderly patients 
with COVID-19, an inverse association has been postulated 
between low expression of an antioxidant factor called 
Superoxide Dismutase 3 (SOD3) in the lungs and disease 
severity [152].

In animal models of lung infl ammation, treatment 
with ginger extract reduces infl ammation, lung structural 

alterations, tissue concentrations of TNF-α, IL-1β and IL-
6, total oxidant status, lowers Malondialdehyde (MDA ) and 
MPO levels. It also prevents DNA oxidation and enhances 
endogenous antioxidants [153,154]. In various animal 
models of neurotoxicity and brain damage, ginger treatment 
improves levels of antioxidant elements such as Glutathione 
S-Transferase (GST), Catalase (CAT), GSH, SOD, Glutathione 
Peroxidase (GPx), Glutathione Reductase (GR) and Quinine 
Reductase (QR), stops lipid peroxidation, prevents NO 
generation, scavenges the hydroxyl radical, and reduces 
iNOS expression, caspase-3 expression, and apoptosis [155-
157]. These ginger-related antioxidant properties are due to 
shogaols, gingerols, and other ketone-phenolic derivatives 
that attenuate SG [155].

In a chlorpyrifos-induced toxicity model, administration 
of a 6-gingerol-rich fraction decreases H2O2, MPO, NO, and 
MDA levels, as well as caspase-3 expression in various organs 
(such as the brain , uterus and ovary), while improving the 
amounts of antioxidant factors such as SOD, GPx, GST, 
CAT and GSH [158]. 6-gingerol also exhibits protective 
infl uences against ischemia-mediated intestinal damage 
by suppressing ROS generation [159]. In an ulcerative colitis 
model, treatment with gingerols reduces MPO activity and 
MDA production [92].

Some eff ective antioxidant activities were also attributed 
to 6-shogaol, such as suppression of ROS, iNOS, COX-2 
production, and upregulation of antioxidant molecules 
such as Nrf2, GSH, quinone-1, and hemeoxygenase-1 
[94,160,161]. Similarly, zingerone enhances the activity of 
GPx, SOD, and CAT, and promotes GSH production, while 
decreasing the expression of NF-κB, IL-1β, IL-6, TNF-α, 
COX-2 and iNOS in a model of cisplatin-mediated toxicity 
[162]. Zingerone also attenuates GS and age-associated 
infl ammation through repression of MAPK/NF-κB signaling 
[163]. Like shogaols, paradols exhibit antioxidant impacts 
[164,165].

Together, ginger and its compounds are able to decrease 
oxidative elements and act as powerful stimulators for GS-
attenuating proteins. Therefore, the antioxidant activity of 
ginger may have benefi cial eff ects in patients with COVID-19.

Potentials of ginger to downregulate 
prostaglandins and Leukotrienes (LT)

PGs are proinfl ammatory mediators generated through 
the COX pathway from Arachidonic Acid (AA) [166]. Some 
leukocyte subsets constitutively express COX-1, whereas 
COX-2 is expressed during infl ammation, promoting PGE2 
production [166].

PGE2 can increase viral pathogenicity in a number of 
infections such as Cytomegalovirus (CMV), RSV, Herpes 
Simplex Virus (HSV), enterovirus [71], and Coxsackie virus 
B2 infections by infl uencing viral replication [167]. In 
pulmonary microvascular endothelial cells, PGE2 promotes 
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infl ammation through upregulation of COX-2 expression and 
also increases CXCL8 production [168]. SARS-CoV increases 
PGE2 production by binding to COX-2 [169]. PGE2 has been 
postulated to play an important role in the pathogenesis 
of COVID-19 [167]. During acute infl ammation, COX-2 
expression and PGE2 production are increased more in men 
compared to women, thus increased PGE2 production in men 
causes more severe COVID-19 [167]. The increased severity 
of COVID-19 in older and obese people was also attributed 
to higher levels of PGE2 [170,171]. PGE2 also contributes to 
intravascular thrombosis, which is a crucial complication in 
patients with COVID-19 [172].

During SARS-CoV-2, AA is released by various types of 
leukocytes. AA, as an antiviral component, can inactivate 
enveloped viruses, such as SARS-CoV-2 [173]. Thus, AA 
defi ciency promotes human susceptibility to SARS-CoV-2 
[171,173]. Suppression of mPGES-1 reduces PGE2 generation 
and may promote the immune response against SARS-CoV-2 
[171,173]. Selective suppression of mPGES-1 stimulates 
antiviral immunity and improves survival rates in infl uenza 
A virus-infected mice [174].

LTs, including LTB4, LTC4, LTD4, and LTE4, are 
produced from AA via the 5-lipoxygenase (5-LOX) pathway 
[166]. Infl uenza virus promotes 5-LOX expression in the 
lungs, and LTB4 suppresses infl uenza virus expansion [175]. 
Neutrophils exposed to LTB4 exhibit a strong virucidal 
response against RSV, infl uenza virus, and rhinovirus 
[171,176].

The COX and LOX enzymes are inactivated by gingerols 
and shogaols [177]. Ginger extract, 6-shogaol, and 
6-gingerol prevent COX-2 activation and PGE2 generation 
through various cell types, such as microglia and LPS-
stimulated colonic epithelial cells in vitro. [84,115,178]. COX-
2 expression was also repressed in macrophages stimulated 
using gingerols, 8-paradol, and dehydrogynedone 
[179,180]. In patients with Rheumatoid Arthritis (RA) 
and osteoarthritis, ginger supplementation prevents PG 
and LT production [181]. Ginger prevents the synthesis 
of PG and LT by inactivating the enzymes COX-1/2 and 
5-LOX, respectively [177]. Double repression of PG and LT 
generation by ginger could mitigate hyperinfl ammation in 
COVID-19 patients.

Potentials of ginger to modulate T-cell mediated 
responses

5.7.1. Potentials of ginger to modulate Th1 cell-mediated 
responses: CD4 Th1 eff ector cells secrete several cytokines, 
particularly IFN-γ, IL-2, and TNF-α, which provide help to 
CD8 T cells as well as Natural Killer (NK) cells to kill virally 
infected cells and reduce the viral load [182-184]. The 
eradication of SARS-CoV-2 appears to require timely and 
adequate activation of Th1 cells. However, Th1 cells may play 
various roles during diff erent periods of COVID-19. During 
SARS, Th1 and Th2 cell responses appear to be related to 
resistance and disease progression, respectively [185]. All 

virus- specifi c CD4 T cells in individuals who recovered from 
mild COVID-19 were subsets of Th1 cells [186]. CD4 Th cells 
were decreased in COVID-19 patients who did not respond 
to antigenic stimulation with major SARS-CoV-2 proteins 
[187]. Older age and a higher rate of comorbidity were also 
associated with a lower number of IFN-γ-producing cells 
[187].

Immunopathological reactions can be caused by 
unbalanced and excessive responses mediated by Th1 cells 
[188,189]. In COVID-19 patients suff ering from ARDS, 
virus-specifi c T cells mainly generated Th1-cell-related 
cytokines, while Th17- and Th2-cell-related cytokines were 
also produced [190]. Patients with severe COVID-19 showed 
higher proportions of Th1 cells in their secondary lymphoid 
organs, which were associated with reduced numbers 
of Tfh cells [191]. In transgenic mice expressing human 
ACE2, SARS-CoV-2 infection results in the accumulation 
of macrophages and lymphocytes in the lungs with 
predominant Th1 cell activity, as well as large amounts of 
proinfl ammatory cytokines/chemokines [192]. Importantly, 
elevated amounts of TNF-α, IFN-γ, IFN-γ-inducible protein 
10 (IP-10), and MCP-1 correlated with severity of COVID-19 
[69,193].

Th1 cell-mediated responses may be regulated by ginger, 
as it inhibits the production of IL-12 (an inducer of Th1 
cells) and downregulates MHC class II molecules as well 
as costimulatory molecules (such as CD80 and CD86) by 
Antigen Presenting Cells (APC) [76]. Ginger can modulate 
antigen presentation, CD4 T cell response, as well as IFN-γ 
and IL-2 secretion by T cells [76]. Ginger extract also reduces 
IL-12 production and IFN-γ in EAE mice [194,195].

In an allergic dermatitis model, 6-shogaol attenuates 
allergy symptoms and modulates the generation of Th1 cell 
cytokines (including IL-12, IFN-γ, and TNF-α), as well as 
Th2 cell cytokines (IL-4) and IL-13) [94]. Gingerols reduce 
T cell activation and proliferation, as well as IFN γ and IL-2 
secretion by activated T cells [196]. In a potent Th1-polarizing 
milieu, 6-gingerol also has a direct eff ect on TCR-mediated 
signaling and suppresses Th1 cell development [197].

However, in a mouse model of tuberculosis, 6-gingerol 
increased the counts of splenic IFN-γ and IL-17-producing 
CD4 T cells, while reducing the counts of splenic FOXP3 
regulatory T cells (Treg) [198]. In immunocompromised 
mice, treatment with ginger extract increases serum 
amounts of Th1 cytokines, such as ifn-γ and TNF-α [199]. 
Collectively, ginger and some of its bioactive compounds 
may modulate Th1 cell responses.

Potentials of ginger to modulate Th2 cell-mediated 
responses: Th2 cells produce cytokines, including IL-4, IL-
5, IL-6, IL-9, IL-10, and IL-13, providing helper signals for 
B cells to produce antiviral antibodies [13,200]. Adequate 
antibody responses to parts of the S protein, particularly the 
RBD, can block SARS-CoV-2 binding to ACE2-expressing 
cells [201]. Although the exact role of Th1/Th2 cells in 
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the diff erent stages of SARS-CoV-2 infection is obscure, 
balanced Th1/Th2-dependent responses appear to be 
necessary for successful virus control. Th2 cell responses, 
rather than Th1 responses, are induced against SARS-CoV-2 
in patients requiring intensive care [202]. Indeed, large 
amounts of Th2 cell cytokines were identifi ed in fatal cases 
of COVID-19 compared to cured patients [203].

In mouse models of airway allergy, ginger extract 
and 6-gingerol suppress Th1 and Th2 cell expansion and 
diff erentiation, downregulate Th1 and Th2 cell-related 
cytokines, suppress the generation of IgE and block the 
accumulation of mast cells [60,197,204]. 6-gingerol also 
directly inhibits Th2 cell polarization in a strong Th2-
polarizing medium [197]. A better understanding of Th2 cell-
dependent responses in COVID-19 needs further study. If the 
contribution of Th2 cells to the pathogenesis of COVID-19 is 
identifi ed, ginger has a potent ability to regulate these cells.

Potentials of ginger to modulate Th17 cell-mediated 
responses: Th17 cells produce many types of cytokines, such 
as IL-17A, IL-17F, IL-21, IL-22, IL-26, TNF-α, CCL20 and 
GM-CSF [13,205]. TNF-α, IL-1β, IL-6, CXCL1, CXCL8 (IL-8), 
CXCL6 , CCL2, GM-CSF and G-CSF are generated by diff erent 
lymphoid and nonlymphoid cell types in response to IL -17A.

Hyperactivation of Th1/Th17 cells results in the 
generation of many proinfl ammatory cytokines that promote 
pulmonary dysfunction. Robust Th17 cell-related responses 
occur in patients infected with SARS-CoV and MERS-CoV 
[206,207]. Higher blood concentrations of Th17 cells have 
been reported in severe patients with COVID-19 [208]. A 
number of risk factors associated with COVID-19, including 
obesity, Chronic Kidney Disease (CKD), hypertension, aging, 
diabetes, and male gender, have been linked to powerful 
Th17 cell activity [209]. Hypoxia and downregulation of 
ACE2 also potentiate Th17 cell activities in COVID-19 [209].

Many of the cytokines in the COVID-19-associated 
cytokine storm are derived from activated Th17 cells. 
As a result, uncontrolled Th17 cell responses lead to 
hyperinfl ammatory reactions and tissue damage in patients 
with severe COVID-19. In patients with ARDS, alveolar 
infl ammation, lung damage, organ dysfunction, and poor 
outcome have been associated with increased levels of IL-
17A in BALF. 210 In patients infected with SARS-CoV-2 
and SARS-CoV, IL-22 increases the generation of life-
threatening edema fi lled with fi brin and mucins [211].

Ginger extract decreases the generation of IL-23 
(complete activator of Th17 cells) and IL-17 in EAE mice [212]. 
In addition, ginger extract decreases the production of IL-17, 
IFN-γ, and IL-4 in mice with arthritis [213]. Ginger extract 
downregulates ROR-γt, T-bet, and GATA-3 (transcription 
factors of Th17, Th1, and Th2 cells, respectively) in PBMC 
collected from asthmatic patients [214]. In microglial cells 
exposed to LPS, 6-shogaol downregulates the expression of 
IL-1β and TNF-α (as promoters of Th17 polarization) [115]. 
Collectively, ginger may attenuate deleterious infl ammatory 

reactions in COVID-19 patients by suppressing Th17 cell-
related responses.

Potentials of ginger to modulate responses mediated 
by Treg cells

Treg cells generate immunomodulatory cytokines 
TGF-β, IL-10, and IL-35, which play a key role in maintaining 
tolerance to self-antigens and preventing harmful 
uncontrolled immune responses during infections [13,205]. 
However, hyperactivation of Treg cells may aid pathogen 
persistence [205,215]. Treg cells may play diff erent roles 
during the various phases of COVID-19. Hyperactivation 
of Treg cells in the initial stages of infection may result in 
SARS-CoV-2 persistence, while their activation during later 
stages may minimize immunopathological reactions.

In patients with severe COVID-19, blood counts of Treg 
cells decreased [216,217]. Indeed, patients with severe 
COVID-19 have higher numbers of Th17 cells, lower numbers 
of Treg cells, and lower Treg/Th17 cell ratios [211,218-220]. 
An imbalance of Th17/Treg cells, with a shift toward Th17 
cells, may play a major role in the development of COVID-
19-related complications, such as lung damage and ARDS 
[221,222]. Powerful Th17 cell activities, as well as defi cient 
Treg cell responses, may contribute to excessive secretion 
of proinfl ammatory cytokines and chemokines, reinforcing 
the cytokine storm, exacerbating disease, and perhaps 
leading to failure. Multi- organ disease and death in some 
patients with COVID-19. However, the frequency of Treg 
and Th2 cells in critically ill COVID-19 patients (n = 3) with a 
poor prognosis was found to be higher than in those (n = 3) 
with a favorable prognosis [223]. These fi ndings need to be 
validated in research with a larger sample size.

In EAE mice, ginger extract enhances the generation 
of TGF-β (an inducer of Treg cells) [194]. However, the 
production of IL-6 (an inducer of Th17 cells) was inhibited by 
ginger and some of its ingredients [79,121]. Therefore, ginger 
has the ability to correct the Th17/Treg imbalance towards 
Treg cells that may attenuate the severity of COVID-19. 
Administration of ginger extract to cardiac allograft mice 
decreases lymphocyte proliferation, downregulates the 
expression of IFN-γ, IL-2, and IL-4, and increases the 
production of Treg-related cytokines such as TGF-β and IL 
-10 [224].

Conclusion
A complex network of immune system, infl ammatory 

and oxidative reactions of SARS-CoV-2, contribute to the 
pathogenesis of COVID-19. Ginger has been widely used 
for thousands of years as a spice or dietary supplement, as 
well as a traditional medicine for the treatment of various 
disorders [13]. Here, we have provided clear evidence that 
ginger can exert direct and indirect inhibitory eff ects on 
the viral life cycle, including binding, entry, replication, 
packaging, and assembly, perhaps through interaction 
with proteins, and key viral enzymes. Ginger may aff ect 
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key fundamental processes involved in the pathogenesis 
of COVID-19 due to its antiviral, anti-infl ammatory, 
immunomodulatory, and antioxidant properties. This review 
presents a comprehensive understanding of the potentials 
of ginger and its compounds for the potential management 
of COVID-19. It is worth accurately identifying the eff ects of 
SARS-CoV-2 infection on all host organs and evaluating the 
impacts of ginger on virus-infected tissues.

The eff ect of ginger-derived ingredients during 
COVID-19 infection using suitable animal models needs to 
be evaluated in future studies. Engineered mice expressing 
human ACE2 were recommended as a suitable model to study 
COVID-19 [225]. No signifi cant side eff ects (except platelet 
aggregation) were found in preclinical studies with ginger 
[13]. In addition, clinical trials are needed to investigate the 
preventive and therapeutic potential of ginger in patients 
infected with SARS-CoV-2 using ginger or ginger + antiviral 
treatments. A combined ginger therapy with a validated drug 
may be a promising candidate for the treatment of COVID-19.
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