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Natural product search is an enduring revitalization upon the exploration of a huge already exotic 
potential for Secondary Metabolite (SM) production obscure in microbial genomes. Filamentous 
fungi genomes have an immense number of “orphan” SM gene clusters. Current evaluation indicates 
that only 5% of extant fungal species have been explored, thus the apparent for the disclosure of 
novel metabolites in fungi is extensive. In this situation, fungi burgeoning in severe environments 
are of special interest since they are distinguished producers of astonishing chemical structures. 
Genome mining strategies, more specifi cally epigenetic strategies are playing an important role in 
natural product discovery. This review has been organized and written to focus on available epigenetic 
approaches, targeting on DNA methyltransferase and histone deacetylase inhibitors along with 
reported novel secondary metabolites. To the best of our knowledge, this review article is the fi rst 
attempt to incorporate the facts regarding DNA methyltransferase inhibitors and histone deacetylase 
inhibitors along with reported novel secondary metabolites with their recorded bioactivities.

ABSTRACT

INTRODUCTION 
In the repetitive research by pharmacists for new products, natural selection 

is superior to combinatorial chemistry for discovering novel substances that 
have the potential to be developed into this era [1]. Search for natural products is 
undergoing rebirth upon the discovery of a huge previously unknown potential for 
Secondary Metabolite (SM) production hidden in microbial genomes. Many fungi 
can eff ectively produce many natural products, more specifi cally bioactive natural 
products. Fungi are biosynthetically nature gifted organisms effi  cient of producing 
an extensive range of chemically diverse and biologically fascinating small 
molecules. The majority of scientifi c insight in fungal natural products has focused 
on their pharmaceutical applications, roles as mycotoxins, and diverse ecological 
functions. Unfortunately, characteristic fungal fermentation approaches such as 
an axenic shake or static culture strategies on artifi cially defi ned media are a poor 
replacement for mirroring an organism’s native habitat. The signifi cance of these 
procedures is that only a subgroup of the biosynthetic pathways which encrypt 
for secondary metabolite production in fungi are ever expressed, thus restraining 
prospects for understanding the comprehensive drug discovery potential of these 
organisms [2]. 

DNA AND HISTONE METHYLATION AMONG FUNGI 
It has been revealed that there is a biological relationship between the 

methylation of DNA and histone, which both are interrelated with diverse chemical 
reactions. This connection has a dynamic function in gene silencing from fungi to 
mammals [3-7]. The histone modifi cation markers, such as H3K4me3, can work 
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as indirect regulators to aff ect DNA methylation [8-10]. The 
primary methyltransferase of histone arginine methylation 
(H3R8me) is PRMT5, and its decreased levels can reduce the 
binding between DNMT3A and chromatin, decrease DNA 
methylation, and afterward facilitate genetic transcription 
[11]. Current data recommend that DNA and histone 
methylation commonly control fungal development and 
biosynthesis of toxic secondary metabolites [12]. Histone 
methylation is willingly reversible and usually precedes 
DNA methylation in N. crassa, whereas DNA methylation 
is comparatively stable and conduces to form a stable 
heterochromatic state [4,7]. 

DNA methylation is an epigenetic mechanism 
comprising the transfer of a methyl group onto the cytosine 
C5 position to form 5-methylcytosine. DNA methylation 
controls gene expression by engaging proteins involved in 
gene repression or by hindering the binding of transcription 
factor(s) to DNA. In the course of development, the DNA 
methylation pattern in the genome changes as a result of a 
vigorous process comprising both de novo DNA methylation 
and demethylation. As a result, discriminated cells develop 
a steady and exceptional DNA methylation pattern that 
controls tissue-specifi c gene transcription [13]. 

Among fungi, DNA methylation consists of imperceptible 
levels i.e. ≤ 0.1% of cytosine residues [14] to low but 
detectable levels i.e. 0.2-4.3% of cytosine residues [15-
17] to markedly high level i.e. 10-30% of cytosine residues 
[18]. Furthermore, the methylated locates are usually 
clustered away from principally unmethylated regions. 
Though the signifi cance of DNA methylation in fungi is still 
uncertain, Ascobolus immersus and Neurospora crassa are two 
documented examples of DNA methylation that plays roles 
in genome protection. Current studies on the genome-wide 
methylation study specifi ed that DNA methylation ensues in 
and around genes, and fungal epigenetic entities subsidized 

to fungal growth as well as genome protection [19,20]. 
Furthermore, while some functions of DNA methylation 
have been identifi ed, its regulation is not well understood 
(Figure 1). 

HISTONE ACETYLATION AND 
DEACETYLATION 

Histone acetylation and deacetylation are crucial 
processes of gene regulation. These reactions are 
naturally accelerated by an enzyme including "Histone 
Acetyltransferase" (HAT) or "Histone Deacetylase" (HDAC). 
The process of acetylation in terms of gene regulation is the 
transfer of an acetyl functional group from a molecule i.e. 
from Acetyl-Coenzyme A to histone. Whereas deacetylation 
is the reverse process of acetylation in which an acetyl group 
is removed from a histone molecule. 

Acetylated histones which are octameric proteins 
organize chromatin into nucleosomes, basic structural 
units of the chromosomes and fi nally upper order structures 
characterize a type of epigenetic marker within chromatin. 
Acetylation reaction eliminates the positive charge on the 
histones, thus reducing the interaction of the N-terminal of 
histones with the negatively charged phosphate groups of 
DNA. As a result, the compressed chromatin is converted into 
a more relaxed structure that is concomitant with greater 
levels of gene transcription. This recreation can be inverted 
by HDAC activity. Relaxed, transcriptionally active DNA is 
stated as euchromatin. More compressed DNA is termed 
Compression can be brought about by processes including 
deacetylation and methylation [21] (Figure 2). 

So far it can be said that both processes of DNA 
methylation and histone deacetylation among fungi are 
not biosynthetically essential. These processes can alter the 

Figure 1 Mechanism of DNA methylation by the addition of methyl group on 5ʹ of cytosine.
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Figure 2 General mechanism of histone acetylation and deacetylation.

transcription of many essential genes which may require 
either for defense mechanism [22] (Figure 3). Transcription 
of such genes usually not happened until such fungi have 
not been exposed to special modifi ers. For that purpose, 
naturally or synthetically some modulators are available 
which were studied with diff erent aspects including cancer 
treatment among eukaryotes [23]. These kinds of modulators 
are well known as epigenetic modulators. In the research of 
novel bioactive natural products by epigenetic strategies, 
these epigenetic modulators are serving as inducers for 
the induction of silent biosynthetic gene clusters in fungi 
[24,25]. In literature, several examples are available for the 
use of such epigenetic modifi ers to be used for the induction 
of antimicrobial metabolites [26], toxicities induction [27], 
anticancer candidates [28], and others [29]. 

EPIGENOME MANIPULATION 
Practicing epigenetic strategies with some 
examples 

The term ‘epigenetic’ was invented by Waddington 
CH [30] and from that time; the defi nition of ‘epigenetic’ 
has developed. Epigenetics is the study of molecular 
procedures that aff ect the sequence of information between 

an adaptable gene expression patterns and a constant DNA 
sequence. The well-mannered defi nition of epigenetic is 
stated as the range of biochemical features that serve to 
modify the transcription of a gene or genes, nevertheless, 
do not straight forward change the conformation of DNA. 
Additionally, the epigenome functions as a biological fi lter 
that is accountable for controlling the availability of cells 
to ‘inbound’ interspecies and intraspecies signaling events. 
Likewise, the epigenome also can act as an ‘outbound’ fi lter 
that can chunk the DNA transcription and, in that way, 
successfully results signal generation [2,31]. 

Fungal genome manipulation via chemical 
epigenetics 

The scientifi c researcher community's abilities to an 
emerging collection of small-molecule tools has permitted 
the expansion of chemical epigenetic techniques [32] that 
are directed toward searching how epigenome features 
control biological processes. This includes the biosynthetic 
mechanisms regulating potential for secondary metabolite 
production [33]. A considerable body of information has 
accrued relating to the eff ects of epigenetic modulators 
on fungi. Maximum examples have engrossed on the use 
of DNMT inhibitors such as 5-azacytidine (1) and 5-aza-
2′deoxycytidine (decitabine) (2), which have validated 

Figure 3 DNA demethylation and histone deacetylase inhibition mechanism.
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the capability to reduce the DNA methylation- interceded 
silencing of a phleomycin-resistance gene in Phanerochaete 
Chrysosporium [33] and hygromycin-resistance genes in 
N. crassa [34] and Schizophyllum commune [35]. Some of 
the data related to the role of 5-azacytidine (1) revealed 
the capability of this in induction of heritable epigenetic 
modifi cations in fungi with respect to the acquisition of 
new and mitotically stable phenotypic characteristics [36]. 
However, a mutation-inducing eff ect for 5-azacytidine as a 
result of its DNA integration cannot be completely ignored 
in some situations [34,35]. Another unusual DNMTi is RG-
108 (3), reported in the article of Asai, et al. [37] with the 
isolation of novel secondary metabolites [38]. Other less 
common DNMTi are mathyladenosine (4), sinefungin (5), 
and S-adenosylhomocystein (6) [36] (Figure 4). 

Chemical-epigenetic approaches and mutant studies 
were positively employed for the de novo or improved 
production of structurally diverse fungal natural 
products (e.g., mycotoxins, anthraquinones, nygerones, 
cladochromes, and lunalides) [36]. Some reported 
epigenetic modifi ers apart of DNMTi are HDAC inhibitors 
(HDACi). Several research articles have described the 

diff erential eff ects of HDAC inhibitors on fungi. A chemical 
genetics approach retaining hydroxamic-acid-containing 
compounds such as trichostatin A (7) has also been used 
to reveal HDAC functions and universal transcriptional 
control mechanisms in Saccharomyces cerevisiae [39]. It 
is notable that Cochliobolus caronum, a fungal pathogen, 
which is responsible for the production of HC-toxin which 
is a potent HDAC inhibitor [40], synthesize a structurally 
modifi ed HDAC that is unaff ected to both trichostatin A (7). 
It is supposed that this exclusively adapted HDAC serves to 
defend C. caronum from the autotoxic eff ects of HC-toxin 
throughout the fungus's invasion and chemical attack upon 
its maize host [41]. A synthetic derivative of trichostatin A 
(7), suberoylanilide hydroxamic acid (SAHA) (8) also known 
as vorinostat, is another noteworthy examples of potent 
HDACi that have been eff ectively used as chemical epigenetic 
probes in a variety of eukaryotic systems, including 
fi lamentous fungi [10]. 

Other examples of amending media with HDACi are 
nicotinamide (9), suberoyl bishydroxamic acid (SBHA) (10), 
and sodium butyrate (11) in several studies directed not only 
to the improved production of compounds by fungi besides 

Figure 4 Chemical structures of DNMTi and HDACi.
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to the biosynthesis of novel compounds that were not 
produced without epigenetic modifi cation [42,43]. Apart of 
that, some other unusual HDACi which uncommonly used 
are valproic acid (12), trapoxin (13), apicidin (14), and HC-
toxin (15) [36] (Figure 4). 

DIFFERENT EPIGENETIC MODIFIERS 
AS DNMTI AND HDACI TESTED ON 
FUNGI WITH REPORTED SECONDARY 
METABOLITES (TABLE 1)
DNA Methyltransferase Inhibitors (DNMTi) 

5ʹ Azacytidine: A chemical analog of cytidine, azacitidine 
and its deoxy derivative, decitabine  which is also known 
as 5-aza-2′-deoxycytidine are used in the treatment of 
the myelodysplastic syndrome. Czechoslovakia fi rstly 

synthesized both of these drugs which were used as potential 
chemotherapeutic agents for cancer [76]. Perturbation of 
5-azacytidine to Cladosporium cladosporioides can stimulate 
the production of numerous oxylipins including a glycerol 
conjugate (16), (9Z, 12Z)-11-hydroxyoctadeca-9,12-
dienoic acid (17), and its methyl ester (18). Treatment of a 
Diatrype species with 5-azacytidine elicited the formation 
of lunalides A (19) and B (20) [2]. Yang and co-workers also 
reported the production of afl atoxins by Aspergillus fl avus via 
5azacytidine treatment [12]. 

Chemical epigenetic manipulation of Penicillium 
citreonigrum directed to profound changes in the secondary 
metabolic profi le of its guttate. Fungi treated with 50 μM 
5-azacytidine results in the 2 new metabolites production, 
meroterpenes atlantinones A (21) and B (22). Both 
metabolites from the P. citreonigrum guttate were tested for 
antimicrobial activity in a disk diff usion assay but found to be 

Table 1: List of novel secondary metabolites stimulated by different DNMTi and HDACi with reported bioactivities.

Species Modulators Class Compounds Reported 
Bioactivity References

Cladosporium 
cladosporioides 5ʹ azacytidine DNMTi Oxylipins [glycerol conjugate (16), (9Z,12Z)-11-hydroxyoctadeca-9,12-

dienoic acid (17), and  its methyl ester (18)] NT [2,36]

Diatrype species 5ʹ azacytidine DNMTi Lunalides A (19) and B (20) NT [2]

P. citrreonigrum 5ʹ azacytidine DNMTi Meroterpenes [atlantinones A (21) and B (22)] NA [44]

C. cladosporioides SAHA HDACi Cladochromes A- D, F, G (23-28), and calphostin B (29) Pathogenesis [2,36]

Neurospora crassa 5ʹ azacytidine DNMTi Carotenoids NT [45]

A. alternate and 
Penicillium expansum Trichostatin A HDACi Unidentifi ed natural products NT [46]

Aspergillus niger SAHA HDACi Nygerone A (30) NT [36]

Aspergillus sp. 5ʹ azacytidine DNMTi

Bisabolane-type sesquiterpenoids [(R)-(–)-hydroxy sydonic acid 
(31), (S)-(+)-sydonic acid (32), (S)-(–)-5-(hydroxy methyl)-2-(2-,6-,6--

trimethyltetrahydro-2H-pyran-2-yl)phenol (33), (7S,11S)-(+)-12-hydroxy 
sydonic acid (34), (S)-(+)-11-dehydrosydonic acid (35), and (S)-(–)-

sydowic acid (36)]

Antidiabetic, anti-
infl ammatory, 
antibacterial 

activity

[47-52]

Penicillium mallochii SAHA HDACi Isochromophilone XIV (37) and isochromophilone XV (48) NT [53]

Aspergillus versicolor SAHA HDACi
(+)-brevianamide X ((+)−39), (−)−brevianamide X   ((-)- 40), 

3-[6-(2-methylpropyl)-2-oxo-1H-pyrazin-3-yl] propanamide (41), 
versiperol A (42)

NT [54,55]

A. cruciatus SAHA HDACi Primarolides A (43) and B (44) NT [56]
Chrysanthemum indi-

cum SAHA HDACi Prenylated aromatic polyketides, chaetophenols A-F (45- 50) NT [42]

Penicillium sp. HS-11 SAHA HDACi 4-epipenicillone B (51) and chrysogine (52) NA [57]

Eupenicillium sp. LG41  Nicotinamide HDACi Eupenicinicols C and D (53) and (54)

53 has 
antibacterial 
and cytotoxic 
while 54 has 
antibacterial 

activity

[58]

Aspergillus terreus 
OUCMDZ-2739 Trichostatin A HDACi

Meroterpenoids [(4S)-4 decarboxylfl avipesolide C (55), 1-(2,2- 
dimethylchroman-6-yl)-3-(4 hydroxyphenyl)propan-2-one (56), (R,E)-3-

(2,2-dimethyl chroman- 6-yl)-4-hydroxy-5-((2-(2 hydroxypropan-2-yl)-2,3 
dihydrobenzofuran-5-yl)methylene) furan- 2(5H)-one (57), methyl (R)-2 

(2-(2-hydroxypropan-2-yl)-2,3 dihydrobenzofuran-5-yl) acetate (58)

55 possessed 
α-glucosidase 

inhibitory activity
[59]

Torrubiella  
luteorostrata SBHA HDACi Tryptophan analogs [ luteorides A–C (59–61) NT [60]

Phomopsis sp. SBHA HDACi 13-angeloyloxy-diplosporin (62) NA [61]

Cochliobolus lunatus Sodium butyrate HDACi 14-membered resorcylic acid lactones [ 5-bromozeaenol (63) and 
3,5-dibromozeaenol (64)] NA [62]
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R1 strain from Datura 
stramonium L. SBHA HDACi

Fusaric acid derivatives [5-butyl-6-oxo-1,6-dihydropyridine-2-carboxylic 
acid  (65) and 5-(but-9-enyl)-

9
6-oxo-1,6-dihydropyridine-2-carboxylic acid (66)]

NA [63]

Chaetomium 
cancroideum Nicotinamide HDACi Chaetophenols G (67) and cancrolides A (68) and B (69) NA [64]

Microascus sp. SAHA HDACi EGM-556 (70) NT [65]

Phoma sp. nov. 
LG0217 SAHA HDACi (10ʹS)-verruculide B (71), vermistatin (72) and dihydrovermistatin (73)

Protein tyrosine 
phosphatases 

(PTPs) 1B 
(PTP1B), Src 

homology 
2-containing 

PTP 1 (SHP1) 
and T-cell 

PTP (TCPTP) 
inhibitory activity

[66]

Alternaria sp. SBHA HDACi
Alternariol (74), alternariol-5-O-methyl ether (75), 3′-hydroxyalternariol-5-
O-methyl ether (76), altenusin (77), tenuazonic acid (78), and altertoxin 

II (79)
NT [67]

Pestalotiopsis 
crassiuscula 5ʹ Azacytidine DNMTi Courmarin (80) NA [68]

Isaria tenuipes SBHA HDACi Tenuipyrone (81) NT [38]

Cordyceps indigotica 5ʹ Azacytidine DNMTi Indigotide A (82) and indigotide B (83) NT [69]

Cordyceps annullata, SBHA HDACi Annullatins A–E (84–88) Cannabinoid 
receptor ligand [37]

Chaetomium 
mollipilium Nicotinamide HDACi Mollipilin A-E (89-93) Anticancer 

activity [70]

Gibellula formosana RG-110/SBHA DNMTi/
HDACi

Formosterols A (94) and B (95), 12ʹ-O-acetylisariotin A (96), 1-epi-
isariotin A (97), and isariotins K-M (98-100), NT [71]

Graphiopsis 
chlorocephala Nicotinamide HDACi Cephalanones A-F (101- 106) NT [72]

Beauveria felina SAHA HDACi Desmethylisaridin E (107), desmethylisaridin C2 (108), and isaridin F 
(109)

Anti-
infl ammatory [73]

Chaetomium sp SAHA/5ʹ 
azacytidine

HDACi/
DNMTi Isosulochrin (110) NA [74]

Leucostoma persoonii Sodium butyrate HDACi Cytosporone R (111) NA [75]

inactive [44]. Aspergillus sp. XS-20090066 was treated with 
a DNA methyltransferase inhibitor, 5-azacytidine, resulted 
the production of six bisabolane-type sesquiterpenoids, 
including (R)-(–)-hydroxy sydonic acid (31) [48], (S)-
(+)-sydonic acid (32) [48], (S)-(–)-5-(hydroxymethyl)-
2-(2_,6_,6_-trimethyltetrahydro-2H-pyran-2-yl)
phenol (33) [51,52], (7S,11S)-(+)-12-hydroxy sydonic acid 
(34) [47], (S)-(+)-11-dehydro sydonic acid (35) [50], and 
(S)-(–)-sydowic acid (36) [51]. It has been supposed that 
5-azacytidine may defeat DNA methyltransferase and 
consequently activate genes that express the bisabolane-
type sesquiterpenoids. All compounds were tested for 
their antibacterial activities against various pathogenic 
bacteria strains. Compounds 31-36 showed broad spectrum 
activities against tested bacteria, while the others had weak 
or no antibacterial activities. In particular, (31) showed 
pronounced antibacterial activity against S. aureus with 
a MIC value of 3.13 μM, which was close to the positive 
control ciprofl oxacin (MIC = 2.5 μM). N. crassa was treated 
with 5-azacytidine and result in the production of new 
carotenoids while its bioactivity was not tested [45]. 

Incorporation of 5-azacytidine in endophytic fungus 
Pestalotiopsis crassiuscula culture can change the metabolic 

profi le with biosynthesizing a novel coumarin (80) that was 
confi rmed by NMR spectra. Compound 80 was reported to 
not possess antifungal activity [77]. 

Two new aromatic polyketide glycoside indigotide A (82) 
and indigotide B (83), were isolated from the culture broth 
of the entomopathogenic fungus, Cordyceps tenuipes culture 
broth with the treatment of 5-azacytidine with no tested 
bioactivity [69] (Figure 5). 

Histone Deacetylase Inhibitors (HDACi)

Suberanilohydroxamic Acid (SAHA): 
Suberanilohydroxamic Acid (SAHA) also known as vorinostat 
with trade name Zolinza is a member of a larger class of 
compounds that inhibit Histone Deacetylases (HDAC). 
Histone deacetylase inhibitors have a broad spectrum of 
epigenetic activities. The compound was introduced by 
Ronald Breslow, the Columbia University chemist and Paul 
Marks, A Memorial Sloan-Kettering researcher [78,79]. The 
fi rst Histone Deacetylase Inhibitor (HDACi) was vorinostat 
that was approved by the U.S. Food and Drug Administration 
(FDA) for the treatment of Cutaneous T-cell lymphoma 
(CTCL) on October 6, 2006 [78]. 
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Figure 5 Chemical structures of novel secondary metabolites via 5-azacytidine stimulation.

SAHA as an epigenetic modifying agent used by many 
researchers to stimulate the production of many secondary 
metabolites. Fungi, C. cladosporioides, treated SAHA resulted 
in the production of a complex series of perylenequinones 
including cladochromes A-D, F, and G (23-28) and calphostin 
B (29). The Cichewicz group also isolated nygerone A (30) 
from Aspergillus niger when culturing with suberoylanilide 
hydroxamic acid [79]. Metabolic profi les of P. mallochii 
CCH01 were reported to be changed by SAHA treatment. Two 
new natural sclerotioramine derivatives, isochromophilone 
XIV (37) and isochromophilone XV (38) were purifi ed with 
no reported bioactivity [53]. Two new compounds, (+)- and 
(-)-brevianamide X ((+)- and (-)- 39 and 40)), in addition to 
a new naturally occurring one, 3-[6-(2-methylpropyl)-2-
oxo1H-pyrazin-3-yl] propanamide (41) were purifi ed from 
the chemical-epigenetic cultures of Aspergillus versicolor 
OUCMDZ-2738 with 10 μM vorinostat (SAHA) [54]. Similarly, 
another research reported about SAHA signifi cance to 
improve the diversity of secondary metabolites of Aspergillus 
versicolor by the production of a new biphenyl derivative, 
named versiperol A (42) [10]. Two novel polyketides from 
a fermentation broth of A. cruciatus named primarolides A 
(43) and B (44) and were purifi ed when treated with SAHA in 
combination with sodium chloride (NaCl). Bioactivity of 39, 
40, 41, 42, 43, and 44 were not reported [80]. 

SAHA has been used to suppress HDAC in Chaetomium 

indicum, giving rise to six novel prenylated aromatic 
polyketides, chaetophenols A-F (45-50). Among these, 
compounds 48, 49, and 50 contained extraordinary 
polycyclic skeletons [42]. More recently, chemical analysis 
of the culture broth of the plant endophyte Penicillium 
sp. HS-11 in the modifi ed Martin’s medium improved 
with SAHA, led to the isolation and identifi cation of one 
novel chemical structure, 4epipenicillone B (51) and one 
previously undescribed polyketide with a rarely occurring 
tricycle [5.3.1.03,8] undecane skeleton (R)-(+)-chrysogine 
(52). Acquisition of 4-epipenicillone B (51) enriched the 
chemical diversities of fungal natural products possessing 
a tricyclo [5.3.1.03,8] undecane skeleton. The cytotoxic 
activity of 52 was also evaluated [57]. Vervoort, et al. in 
2010 reported that culturing marine sediment-derived 
fungus Microascus sp. in the presence of SAHA can lead to the 
biosynthesis of EGM-556, a new cyclodepsipeptide (70) of 
hybrid biosynthetic origin [65]. Although bioactivity of that 
metabolite has not performed it was reported that the 16 
atom peptolide center of 70 is rare; the solitary additional 
examples are the antimicrobial unnarmicins from a marine-
derived Photobacterium sp. MBIC06485 [81] and the histone 
deacetylase inhibitory/ antitumor active FK228 (FR901228, 
4) from Chromobacterium violaceum No. 968 [82]. 

Similarly, incorporation of SAHA to a culture broth 
of the endophytic fungus Phoma sp. nov. LG0217 isolated 
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Figure 6 Chemical structures of novel secondary metabolites by SAHA stimulation.



254Anjum K, et al. (2022) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres1430

from Parkinsonia microphylla altered its metabolite profi le 
and give rise to the production of (10ʹS)-verruculide B (71), 
vermistatin (72) and dihydrovermistatin (73). Compound 
71 repressed the activity of Protein Tyrosine Phosphatases 
(PTPs) 1B (PTP1B), Src homology 2-containing PTP 1 (SHP1) 
and T-cell PTP (TCPTP) with IC50 values of 13.7 ± 3.4, 8.8 
± 0.6, and 16.6 ± 3.8 μM, respectively [94]. The addition 
of SAHA to a culture of the fi lamentous fungus Beauveria 
felina was reported to signifi cantly changed its secondary 
metabolite profi le and results in the isolation of three new 
compounds including cyclodepsipeptides, desmethylisaridin 
E (107), desmethylisaridin C2 (108), and isaridin F (109). 
The anti-infl ammatory activity of these compounds was 
evaluated by assessing their eff ect on superoxide anion 
production and elastase release by FMLP-induced human 
neutrophils. Among all three compounds, desmethylisaridin 
E (107) repressed superoxide anion production and 
desmethylisaridin C2 (108) repressed elastase release, with 
IC50 values of 10.00 ± 0.80 and 10.01 ± 0.46 μM, respectively 
[73] (Figure 6). 

Trichostatin A 

An organic compound, trichostatin A is an antifungal 
antibiotic that selectively inhibits the class I and II histone 
deacetylase families of enzymes, but not class III HDACs 
among mammals. Researchers are using trichostatin A as 
an epigenetic modifying agent to selectively eff ect on HDAC 
machinery of fungus to stimulate its secondary metabolite 
production. Four new meroterpenoids named as (4S)-4-
decarboxylfl avipesolide C (55), 1-(2,2- dimethylchroman-
6-yl)3-(4-hydroxyphenyl)propan-2-one (56), (R,E)-
3-(2,2-dimethyl chroman-6-yl)-4-hydroxy-5-((2(2-
hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5 yl)
methylene) furan- 2(5H)-one (57), methyl (R)-2-(2-
(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl) 
acetate (58), were identifi ed from a 10 μM trichostatin 
A treated strain of Aspergillus terreus OUCMDZ-2739. 
Compound 57 showed potent α-glucosidase inhibitory 
activity in comparison with others [59]. Treatment of A. 
alternate and P. expansum with trichostatin A results the 
synthesis of new unidentifi ed compounds with untested 
bioactivity [46] (Figure 7). 

Nicotinamide 

Nicotinamide, also known as niacinamide, serves 
as a component of the coenzyme Nicotinamide Adenine 
Dinucleotide (NAD). Nicotinamide acts as a radio and 
chemosensitizing agent via increasing tumor blood fl ow 
as a result to reduce tumor hypoxia. Nicotinamide also 
inhibits poly (ADP-ribose) polymerases, enzymes involved 
in the rejoining of DNA strand breaks induced by radiation 
or chemotherapy. 

Nicotinamide is a histone deacetylase inhibitor that 
also serves as epigenetic modulators to stimulate the 
secondary metabolites production among fungi. Epigenetic 

perturbation of the endophytic fungus led to enhanced 
production of two new decalin-containing compounds, 
eupenicinicols C and D (53) and (54). Compound 53 was 
active against Staphylococcus aureus with an MIC of 0.1 μg/
mL and confi rmed obvious cytotoxicity against the human 
acute monocytic leukemia cell line (THP-1) and compound 
54 was active against Escherichia coli with a MIC of 5.0 μg/
mL [36]. Nicotinamide can also induce the production of 
chaetophenols G (67) and cancrolides A (68) and B (69) 
when treated with the culture Chaetomium cancroideum 
[64]. Another species of the same genus i.e. Chaetomium 
mollipilium can produce fi ve new C13polyketides, mollipilin 
A-E (89-93) when cultivated with nicotinamide. Mollipilin A 
(89) and B (90) showed moderate inhibitory activity on cell 
growth with GI50 values of 1.8 and 3.7 μM, respectively [71]. 

Asai, et al. [72] reported the addition of nicotinamide, to 
the culture medium of the endophytic G. chlorocephala, can 
signifi cantly stimulate its benzophenone production. A set 
of new benzophenones, cephalanones A-F (101-106) were 
isolated with no tested bioactivities (Figure 7). 

Suberoyl Bis-Hydroxamic Acid (SBHA)

Suberoyl Bis-Hydroxamic Acid (SBHA) is a Histone 
Deacetylase (HDAC) inhibitor that hinders the activity of 
HDAC1 and HDAC3. SBHA suppress the proliferation and 
brings apoptosis in several cancer cell lines. SBHA has been 
shown to trigger Notch signaling in Medullary Thyroid 
Carcinoma (MTC) cells. 

SBHA can signifi cantly eff ect on the secondary 
metabolism of an entomopathogenic fungus, Torrubiella 
luteorostrata by the production of three new prenylated 
tryptophan analogs, luteorides A–C (59-61) with no record 
of bioactivity [60]. Similarly, another new compound, 
named 13-angeloyloxy-diplosporin (62) was isolated from 
the endophytic Phomopsis sp. 0391 cultivated in the presence 
of SBHA. 62 was tested for lipase inhibitory activity but not 
found to be active [61]. 

By the treatment of SBHA to the culture of F. oxysporumiz 
can produce two new fusaric acid derivatives 5-butyl-
6-oxo-1,6- dihydropyridine-2-carboxylic acid (65) 
and 5-(but-9-enyl)-6oxo-1,6-dihydropyridine-2-
carboxylic acid (66). Antibacterial activities were tested but 
unfortunately, none of the compounds was reported to be 
bioactive [62]. The accumulation of the epigenetic modifi er, 
specifi cally, SBHA to the culture medium of Alternaria sp. 
intensely altered the metabolic profi le. Six new compounds 
named alternariol (74), alternariol-5-O-methyl ether (75), 
3′-hydroxyalternariol-5-O-methyl ether (76), altenusin 
(77), tenuazonic acid (78), and altertoxin II (79) [67]. 

Screening of the entomopathogenic fungi Isaria tenuipes 
that were cultured in the presence of SBHA showed signifi cant 
changes in the production of secondary metabolites. This 
approach led to the isolation of tenuipyrone (81), a novel 
skeletal polyketide with no tested bioactivity [68]. The 
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Figure 7 Chemical structures of secondary metabolites stimulated by others HDACi.

secondary metabolite production of an entomopathogenic 
fungus Cordyceps annullata, was improved by the 
accumulation of SBHA to the culture medium. Four new 
2,3-dihydrobenzofurans, annullatins A-D (84-87), and a 
new aromatic polyketide, annullatin E (88) were purifi ed. 

Dihydrobenzofurans serve as cannabinoid receptor 
ligands [37] (Figure 7). 

Sodium butyrate 

Sodium butyrate is the sodium salt of butyric acid. It has 

numerous eff ects on cultured mammalian cells comprising 
inhibition of proliferation, induction of diff erentiation and 
induction or repression of gene expression [43]. Sodium 
butyrate can be used in a lab to bring about any of these 
eff ects. Precisely, butyrate treatment of cells results in 
histone hyperacetylation, and butyrate itself hinders class 
I Histone Deacetylase (HDAC) activity [83], specifi cally 
HDAC1, HDAC2, HDAC3, and butyrate can be used in defi ning 
histone deacetylate in chromatin structure and function 
[84]. 
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Sodium butyrate is also a histone deacetylase inhibitor, 
eff ective to stimulate the metabolite production of fungi by 
reverse the eff ect of histone acetylase. Treatment of sodium 
butyrate to an endophytic fungus Phomopsis species led to the 
isolation of two new 14-membered resorcylic acid lactones 
described with bromine substitution, 5-bromozeaenol (63) 
and 3, 5-dibromozeaenol (64). Both compounds were found 
to be inactive when tested for cytotoxicity, antifouling and 
zebrafi sh teratogenicity [62]. 

Epigenetic modifi er sodium butyrate was incorporated 
into the culture medium Leucostoma persoonii and induced 
the new secondary metabolite Cytosporone R (111) with no 
reported activity [75] (Figure 7). 

DNMTi and HDACi Combined Treatment to Stimulate 
the Secondary Metabolite Production 

The combined treatment of DNMTi and HDACi has 
studied to activate those secondary metabolites which 
could produce neither usual laboratory condition nor single 
epigenetic modifi er treatment. Asai and co-workers have 
applied that approach by using RG-108 and SBHA as DNMTi 
and HDACi, respectively. Both modifi ers were added to 
the culture medium of G. formosana and found signifi cant 
enhancement of the secondary metabolite production. 
Two types of natural products were isolated include highly 
oxidized ergosterols and isariotin analogs. Highly oxidized 
ergosterols, include formosterols A (94) and B (95), while 
fi ve new isariotin analogs include 120O-acetylisariotin A 
(96), 1-epi-isariotin A (97), and isariotins K-M (98-100). 
None of these compounds were tested for any bioactivities 
[72]. Likewise, incorporation of 5-azacytidine or SAHA led 
to the induction of isosulochrin (110) in Chaetomium sp with 
no reported bioactivities [74] (Figure 8). 

EPIGENETIC AS AN APPROACH OF 
ENHANCEMENT OF METABOLITE 
PRODUCTION WITH BIOACTIVITY 

Valproic acid (valproate), an anticonvulsant and a mood 
stabilizer, is a potent Histone Deacetylase Inhibitor (HDACi). 
The addition of valproic acid in the culture medium can 
improved the metabolic profi le of A. fumigatus (GA-L7) by 
the enrichment of fumiquinazoline C (112). This compound 
was produced in trace amounts under normal laboratory 
conditions. Fumiquinazolines are peptidyl alkaloids that are 
reported to possess substantial antitumor [85], antifungal 
[86] and antibacterial properties [87]. 

It was reported that endophytic fungal isolate, diaporthe 
sp. PF20. When exposing to epigenetic treatment along with 
previously characterized piperine producing Colletotrichum 
sp. and Mycosphaerella sp. from the Piper nigrum L. plant can 
overproduce piperine (113) by the use of SAHA. In this report, 
the epigenetic modulator (SAHA) mediated enrichment of 
phytochemical biosynthetic potential of endophytic fungi 
[47]. A. nidulans can overexpress the genes for fellutamides 
A-D (114-117), proteasome inhibitors when treated with 
SAHA, an HDACi [88]. Fungi, Botryosphaeria rhodina when 
cultured in the presence of 5-azacytidine can enhance the 
production of Camptothecin (CPT) (118) as compared to wild 
type. CPT was reported to have anticancer activity [89]. 

The histone deacetylase inhibitor SAHA was also 
reported to signifi cantly improve the alkaloid productivity 
of the strain Claviceps purpurea Cp-1. Principally, the titers of 
total ergot alkaloids, ergometrine (119) were progressively 
improved with the increasing concentration of SAHA in the 
fermentation medium, and the maximum production of 

Figure 8 Chemical structures of secondary metabolites produced by the combined exposure of Epigenetic modifi ers.
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ergot alkaloids could be attained at the concentration of 500 
μM SAHA. Particularly, the titers of ergometrine and total 
ergot alkaloids were as high as 95.4 mg/L and 179.7 mg/L, 
respectively, which were twice those of the control [90]. 

The histone deacetylase inhibitor sodium butyrate 
can lead to the enhancement of know bioactive secondary 
metabolites in Leucostoma persoonii including cytosporones 
B (120), C (121) and E (122). Cytosporone E (122) was reported 
to be the most bioactive, displaying an IC90 of 13 μM toward 
Plasmodium falciparum, with A549 cytotoxicity IC90 of 437 
μM, demonstrating a 90% inhibition therapeutic index 
(TI90 = IC90 A459/IC90 P. falciparum) (Table 2). Including, 
cytosporone E (122) was active against MRSA with a Minimal 
Inhibitory Concentration (MIC) of 72 μM [75]. It was reported 
by Xiao, et al. in 2013 that SAHA exhibited a positive impact 
on (+) terrein (123) production in Aspergillus terreus strain 
PF26 which was resulting from endorsing the biosynthesis 
of 6-hydroxymellein, the precursor of (+)-terrein (123). 
(+)-terrein (123) has many reported bioactivities [91] 
(Figure 9). 

KNOWN INHIBITORS OF DNMTS FROM 
NATURAL SOURCES 

Up to date above 500 compounds have been tested 
as inhibitors of DNMTs. Their structure and coverage in 
chemical space have been studied using chemoinformatic 
methods [101]. The DNMT inhibitors targets have been 
compared with inhibitors of other epigenetic targets [102]. 
Additionally, the Structure-Activity Relationships (SAR) of 
DNMT inhibitor using the idea of the activity landscape have 
been acknowledged [103] (Table 3). 

Several diff erent strategies including virtual, organic 
synthesis, and high throughput screening were used to 
isolate DNA methyltransferase inhibitors [131]. For principal 
optimization, organic synthesis has been work in several 
instances [132,133]. Food chemicals and natural products 
have been serving as major sources of active compounds. 
Zwergel, et al. [104] have extensively reviewed the natural 
products as known DNMT inhibitors or demethylating agents. 
The natural products which were isolated belong to the class 

of fl avonoids, polyphenols, anthraquinones, and others. 
We have collected some specifi c data from that review and 
accumulated here. Based on such DNMTi sources/origin and 
type/class, those DNMTi include fl avonoids, genistein (124) 
from soybean Genista tinctoria, quercetin (125) from fruits, 
vegetables and beverages [104-108], luteolin (130) from 
Terminalia chebula [104,114,115], silibinin (134) from Silybum 
marianum, and kazinol Q (135) from Broussonetia kazinoki 
[104,119-122]. Including quinones, nanaomycin A (136) from 
Streptomyces, laccaic acid (137) from Kerria lacca, hypericin 
(138) from Hypericum [104,124-128]. Among polyphenols are 
(-)-epigallocatechin-3-gallate (EGCG) (126) from Camellia 
Sinensis (green tea) [104,109], curcumin (129) from Curcuma 
longa [21,133], caff eic acid (132), and chlorogenic acid (133) 
from Coff ea Arabica [104,118]. Some other reported DNMTi 
were carbazole alkaloid, mahanine (128) from Micromelum 
minutum and Murraya koenigii, terpenoid, boswellic acid 
(131) from Boswellia serrata, nonmetal, selenium (127) is 
an essential trace element which also reported to act like 
DNMTi [104,110-111,116], and bright red carotene, lycopene 
(139) from lycopersicum [104,110-112,116,129]. The bioactive 
profi le, mechanisms, and techniques of such natural 
products well described in the review of Zwergel, et al. [104] 
with their IC50 values (Figure 10). 

Another study conducted by Wei, et al. in 2018 in which 
they examine the crude extract of C. arbuscula with deleted 
hdaA (ΔhdaA) strain resulted in the separation of twelve 
new diterpenoids including three cassanes A-C (140-142), 
onecleistanthane (143), six pimaranes A-F (144-149), and 
two isopimaranes A-B (150-151). Compounds 141 and 142 
has reported to showed strong inhibitory eff ects on the 
expression of MMP1 and MMP2 (matrix metallo proteinases 
family) in human breast cancer (MCF-7) cells [130] (Figure 
10). 

CONCLUSION 
More research on the eff ect of epigenetic modulators on 

fungi could be recommended to discover newly structured 
compounds in future studies. The rate of emerging diseases 
and infections is increasing day by day, and the effi  cacy and 
selectivity of available drugs are decreasing. However, many 

Table 2: List of known secondary metabolites enhanced by different DNMTi and HDACi with reported bioactivities.

Species Modulators Class Compounds Reported Bioactivity/role References

A. fumigatus
(GA-L7) Valproic acid HDACi Fumiquinazoline C (112) Antibacterial, antifungal, antitumor [92]

Diaporthe sp. PF20 SAHA HDACi Piperine (113) Dietary supplement [47]

Aspergillus nidulans SAHA HDACi Fellutamides A-D (114-117) Proteasome inhibitor [88]

Botryosphaeria rhodina 5ʹ azacitidine DNMTi Camptothecin (118) Anticancer [89]

Claviceps purpurea Cp-1 SAHA HDACi Ergometrine (119) Obstetrics [90]

Leucostoma persoonii Sodium butyrate HDACi Cytosporone B, C, and E 
(120-122) Antimalarial and antibacterial [75]

Aspergillus terreus SAHA HDACi (+)-terrein (123)
Anti-infl ammatory, melanin biosynthesis 

inhibition, antibiosis, weed inhibition, 
anti-tumor, improve Osseo integration

[91-100]



258Anjum K, et al. (2022) J Biomed Res Environ Sci, DOI: https://dx.doi.org/10.37871/jbres1430

Figure 9 Chemical structures of secondary metabolites enhanced exposure of DNMTi and HDACi.

Table 3: List of known DNMTi from natural sources.

Sources Inhibitors Class References

Soybean, Genista tinctoria Genistein (124) Flavonoids [104-106]

Fruits, vegetables,
and beverages Quercetin (125) Flavonoid [104,107,108]

Camellia
Sinensis (green tea) (-)-epigallocatechin-3-gallate (EGCG) (126) Polyphenol [104,109]

Essential trace
element Selenium (127) Nonmetal [104,110,111]

Micromelum
minutum and Murraya koenigii Mahanine (128) Carbazole alkaloid [104,112]

Curcuma longa Curcumin (129) Polyphenol [104,113]

Terminalia chebula Luteolin (130) Flavonoid [104,114,115]

Boswellia serrata, Boswellic acid (131) Terpenoid [104,116,117]

Coffea Arabica Caffeic acid (132) and Chlorogenic acid (133) Polyphenols [104,118]

Silybum marianum Silibinin (134) Flavonoid [104,119,120]

Broussonetia kazinoki Kazinol Q (135) Flavonoid [104,121,122]

Streptomyces Nanaomycin A (136) Quinones [104,123,124]

Kerria lacca Laccaic acid (137) Quinones [104,125,126]

Hypericum Hypericin (138) Quinones [104,127,128]

Lycopersicum Lycopene (139) Bright red carotene [104,129]

∆hdaA Calcarisporium arbuscula Three cassanes A-C (140-142), one cleistanthane (143), six 
pimaranes A-F (144-149), and two isopimaranes A-B (150-151) Diterpenoids [130]

eff orts still need to be devoted to addressing these strategies 
towards the infectious era. In this review, 15 DNMTi and 
HDACi are reported; 6 commonly used inhibitors are 
discussed in detail. A total of 96 new compounds with reported 
bioactivities from diff erent research articles are mentioned, 

isolated from those 6 inhibitors, either in combination or a 
single eff ect. Epigenetic techniques have several noteworthy 
benefi ts related to presently available molecular or culture-
dependent techniques. First and leading, it provides a 
needed tool for rapidly retrieving possible pools of cryptic 
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Figure 10 Chemical structures of r1epresentative epigenetic modifi ers from natural sources.

fungal natural products in their natural hosts. Second, this 
approach can be readily implemented in most laboratories 
deprived of widespread retooling, giving it a varied scope of 
consumption. Third, this technique will suggestively reduce the 
cost and exertion of obtaining the products of silent secondary 
metabolic pathways since fungi do not need to be pre-screened 
using a multitude of culture conditions.
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