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Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor defi cits 
caused by the loss of dopaminergic neurons in the Substantia Nigra (SN) and Ventral Tegmental 
Area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. 
Pharmacological models support the concept that modifi cation of noradrenergic transmission can 
infl uence the PD-like phenotype induced by neurotoxins. Exposure to ambient pollutants such as 
air pollutants also can be adversely impacted the Central Nervous System (CNS) by the activation 
of proinfl ammatory pathways and reactive oxygen species. Thus, targeting neuroinfl ammation and 
oxidative stress can be a useful strategy to eliminate the obvious symptoms of neurodegeneration. 
Overall, in the current mini-review, we examined the neuroprotective role of noradrenaline in the model 
of oxidative stress and neuroinfl ammation.

ABSTRACT

INTRODUCTION
Air pollution and other ambient pollutants exposure can be adversely impacted 

the Central Nervous System (CNS) by the activation of proinfl ammatory pathways 
and reactive oxygen species. It is estimated that 20-70 % of urban air pollutants are 
resulting from traffi  c combustion [1-3] and 85% of Particulate Matter (PM) in urban 
areas is related to traffi  c [4]. New evidence suggests that air pollution exposure 
has been known as one of the main sources of neuroinfl ammation and oxidative 
stress, causing CNS and neuropathology disease [5-7]. Activation of ROS and pro-
infl ammatory pathways by PM is thought to elicit maladaptive responses that 
can in turn adversely impact organ function and the CNS also isn’t immune to air 
pollution impact [5,8,9]. There are several pathways via which can be transmitted 
infl ammatory signals from environment to brain [6], so in people exposed to 
urban air pollutants, activation of the peripheral immune system may lead to 
neuroinfl ammation [10]. Neuroinfl ammatory reactions are triggered by oxidative 
stress, cytokines, and chemokines and can lead to impaired neurotransmitter 
and neurotrophin signaling disorders, abnormal protein accumulation, 
neurodegeneration, and neuronal remodeling [11]. Prolonged exposure to these 
pollutants may lead to an increase in the infl ammatory markers upregulation and 
exacerbate previous neurodegenerative disorders [12-15]. In addition, new fi ndings 
support the involvement of neuroinfl ammation in the pathogenesis of emotional 
and cognitive disorders [16,17]. Neurodegenerative Diseases (NDs) pose a greater 
risk to humans, more precisely to the elderly population [18], and according to 
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the WHO, it will overtake cancer in the next 20 years [19]. 
These diseases include a number of neurological disorders 
characterized by a diverse array of pathophysiology and 
are associated with cognitive impairment and/or mobility 
impairment [20]. It includes a wide range of disorders, the 
two most common of which are Parkinson's Disease (PD) 
and Alzheimer's Sisease (AD) [21,22]. Neurodegenerative 
diseases are common to many of the major processes 
associated with dysfunction and neuronal death, including 
oxidative stress and the formation of free radicals, 
neuroinfl ammation, protein folding and malformation, 
bioenergy disorders, and mitochondrial dysfunction [23]. 
PD, the second most common neurodegenerative disorder, 
is characterized by increased production of oxygen free 
radicals leading to alterations of the cellular constituents 
and subsequent loss of dopamine and dopaminergic 
neurons, which are directly responsible for the disease 
symptomatology (bradykinesia, tremor, rigidity, impaired 
posture and balance) [24]. Most cases (up to 90%) have a 
sporadic occurrence, and even for cases in which genetic 
factors have been identifi ed, distinct molecular pathways 
leading to eventual and inevitable cell death are unclear. 
As a result, existing therapies are currently based on the 
symptoms of the disease, and although they do reduce 
the usual symptoms to some extent, they do not restore 
neuronal function or prevent neuronal loss. An important 
factor that signifi cantly reduces therapeutic eff orts is that 
dopaminergic neuron degradation begins long before the 
fi rst clinical signs appear, and even rapid diagnosis at this 
stage does not allow eff ective treatment, because most cells 
have already disappeared [25]. Although historically the 
hallmarks of PD have been related to the degeneration of the 
Substantia Nigra (SN) and Ventral Tegmental Area (VTA), 
it has recently become widely accepted that damage to 
other brain areas precedes the cell loss of SN/VTA neurons, 
making PD-related neurodegeneration a multi-stage 
process [26,27]. The extranigral structures involved in PD 
also include the noradrenergic system [28]. 

Noradrenaline role in parkinson’s disease

Noradrenaline is one of the most important 
neurotransmitters in the central nervous system, and 
predictions of noradrenergic neurons originating from the 
Locus Coeruleus (LC) permeate almost all brain structures. 
In addition, degeneration of noradrenergic neurons in 
the LC region is more pronounced in patients with PD 
and exacerbates the loss of dopaminergic neurons in the 
SN [29,30]. These fi ndings were underscored in a recent 
study, which suggested that PD could not be considered 
a mere dopaminergic neuronal disease [31]. In addition, 
LC integration is a useful indicator in PD clinical trials to 
classify patients for clinical trials due to their noradrenergic 
dysfunction [32]. In fact, PD patients are characterized by 
the following: reduction of LC MRI contrast limited to the 
middle and caudal region of this structure, downregulation 
of Norepinephrine Transporter (NET) density, and loss of 

the noradrenergic terminal [33]. Studies on animal models 
are scarce, but support the statement that modifi cation 
of noradrenergic transmission could aff ect the basic PD-
like phenotype observed in models of pharmacological PD 
rodents. For example, loss of noradrenaline can worsen 
the degradation of nigrostriatal dopamine induced by 
6-Hydroxy Dopamine (6-OHDA). Conversely, an enhanced 
level of noradrenaline may have a neuroprotective 
eff ect in mice subjected to 1- Methyl-4-Phenyl-1,2,3,6-
Tetrahydropyridine (MPTP) [34,35]. These results prompt 
the hypothesis that noradrenergic degradation may be 
thought of as a prodromal phase of PD that progresses in six 
neuropathological stages and eventually reaches a threshold 
responsible for symptoms directly related to profound loss of 
SN / VTA dopaminergic cells [26]. Recently, it has also been 
suggested in non-human primates that severe degeneration 
of ascending noradrenergic protrusions may contribute to 
dysfunction of the dopaminergic cell groups of the ventral 
midbrain and subthalamic nuclei neurons observed in PD 
[36]. Although there is widespread evidence for the eff ects 
of noradrenaline on diff erent populations of dopamine 
neurons in the midbrain, these interactions have not been 
fully elucidated and this topic has not been studied in PD-
related research that focuses primarily on dopamine and 
dopaminergic systems. As our previous results demonstrated 
the benefi cial eff ects of noradrenergic system stimulation in 
a conditional model of progressive Parkinsonism [37], we 
investigated whether decreased noradrenaline levels lead 
to early signs of dopaminergic neuron degeneration in SN / 
VTA. Following that hypothesis, we suggest that an approach 
focused on studying the long-term eff ects of noradrenergic 
degeneration may help elucidate the pathophysiological 
changes that occur in the pre-symptomatic phase of PD.

Noradrenergic and dopaminergic systems

Although the noradrenergic and dopaminergic 
systems of the CNS have diff erent characteristics, they are 
physiologically and functionally having close relationships 
that can overlap and complement each other. Therefore, 
abnormalities in these systems can also be closely 
related to the pathogenesis of many neurodegenerative 
diseases. Noradrenaline was suggested as a compensatory 
mechanism in dopaminergic neuronal degradation of PD 
[28]. Accordingly, a genetic model of PD mice showed that 
noradrenaline levels were directly related to the loss of 
dopaminergic cells [38]. Similarly, in a pharmacological PD 
model, the interrelationships between the two systems were 
confi rmed in a recent study that described the degeneration 
of LC neurons mediated through NLPR3 infl ammation-
dependent microglial activation [39]. Understanding 
the noradrenergic/dopaminergic interaction, especially 
the modulatory eff ects of LC-controlled noradrenergic 
neurotransmission on dopaminergic neurons, may benefi t 
the early diagnosis of the prodromal phase of PD and potential 
preventive treatment. Neuroinfl ammation associated with 
microglial activation and increased reactive gliosis is typical 
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of neurodegenerative disorders including PD [40]. Human 
tissues after death from patients suff ering from PD but also 
Huntington's Disease (HD), Alzheimer's Disease (AD), and 
amyotrophic lateral sclerosis showed reactive astrocytes 
accompanied by reactive microglia in vulnerable areas [41]. 
The imbalance between the noradrenergic and dopaminergic 
systems can directly trigger neuroinfl ammation and early 
signs of neurodegeneration. Noradrenergic neurons may 
aff ect the wellbeing of dopaminergic neurons, by the 
induction of infl ammatory processes.

Glial activation and neuroin lammation

Glial activation, the release of proinfl ammatory 
cytokines, and astrocytic dysfunction have been suggested 
at the source of the neuroinfl ammatory process [42,43]. 
Although infl ammation may be the result of persistent 
neuronal cell death in PD, α-Synuclein may misfold cause 
glial activation [44]. One of the potential physiological roles 
of noradrenaline is to protect neurons by inhibiting glial 
activation and subsequent release of pro-infl ammatory 
factors [45]. This is partly due to the nature of about half 
of the LC axon terminals that do not form the classical 
synapses: noradrenaline escapes to the synaptic cleft and 
reaches adrenergic receptors on glial cells [46], which 
express all functional adrenergic receptors (α1-, α2-, β1- and 
β2-ARs) [47]. In addition, laboratory studies have shown 
that noradrenaline protection measures, at least in part, 
are due to their ability to weaken the activation of microglia 
[48] and astrocytes [49]. Noradrenaline defi ciency and 
its modulatory functions may exacerbate glial functions 
loss. Infl ammation was also observed in previous models 
based on the induction of nuclear stress in other neural 
populations [50]. Failure to induction of infl ammatory 
cytokines (such as IL-6, IL-1β, or TNFα) may indicate that 
degeneration of noradrenergic neurons results in a weak 
infl ammatory state, which activates also neuroprotective 
events such as increased IL-10 expression, probably 
leads to reduce IL-6 levels. IL-10 is a highly potent anti-
infl ammatory cytokine that plays an important role in the 
prevention of infl ammatory and autoimmune pathologies 
[51], and a recent study noted its specifi c role in PD [52]. 
That is, heterozygous M83+/– transgenic mice expressing 
the mutant human A53T α-synuclein under the control of 
the mouse prion protein promoter, primed with IL-10 and 
next seeded with preformed α-synuclein fi brils had shorter 
lifespan or presented exaggerated αSyn pathology [52]. The 
opposite results were obtained by preconditioning IL-6, 
which improved the outcome of induced synucleinopathy 
in mice [53]. Both metalloproteinases have been reported 
to be neuroprotective in AD or multiple sclerosis [54]. The 
MMP-3, MMP1 or MMP-9 metalloproteinases, which are 
prone to inhibition by TIMP1/2, appear to be involved in the 
pathogenesis of PD as shown in vitro studies on neurotoxic 
animal models of PD or postmortem tissue of PD patients 
[55,56]. Also, increasing IL-13 levels can contribute to the 
death of dopaminergic neurons because activation of the 

IL-13Rα1 receptor increases their vulnerability to oxidative 
damage [57,58]. The role of obvious apoptosis-related 
transcripts like Casp9 (caspase 9) in neurodegeneration 
is well documented [59]. Enhanced transcription of Sgk1 
(Serum/Glucocorticoid Related Kinase 1) is upregulated 
in the brains of PD patients [60]. Another upregulated 
transcript is Sparc (Secreted Protein Acidic and Cysteine-
Rich) which has been reported to be expressed diff erently 
in Parkinson's LRRK2-derived astrocytes from iPSC [61]. 
An interesting example is the Eukaryotic Initiation Factor 
3 (Eif3), one of the most complex factors in translation 
initiation, which is crucial in ribosomal turnover in 
translational processes [62]. In addition to reboxetine 
[37], mirtazapine, a noradrenergic and serotonergic 
antidepressant drug, was shown to have therapeutic potency 
in classic pharmacological models of PD: MPTP-treated 
mice [63] and 6-OHDA- injected mice [64]. Atomoxetine, 
a noradrenaline transporter blocker, reduces dopaminergic 
neuronal damage, reduces microglial activation in SN / VTA, 
and promotes functional improvement of motor defects in 
the PD model of infl ammatory lipopolysaccharide mice [65]. 
In addition to β2-AR mediating mechanisms, noradrenaline 
can aff ect infl ammation by suppressing superoxide 
produced by NADPH oxidase [45]. In contrast, reduction of 
noradrenaline through pharmacological lesions degenerates 
dopaminergic neurons in the midbrain by promoting 
infl ammation, reducing neurotrophic factor release, and 
promoting oxidation in the SN [66,67]. On the other hand, 
it has also been confi rmed that combined noradrenergic and 
dopaminergic pharmacological lesions lead to more severe 
motor and non-motor behavioral impairments by increasing 
neuroinfl ammation and promoting neuronal death [68].

Disruption of the nucleolar structure and function 
impair ribosome biogenesis and triggers the so-called 
nucleolar stress response [69,70], which induces cell death 
[71]. Nucleolar stress is common in neurodegenerative 
diseases [72,73]. Dopaminergic neurons in PD patients 
show impaired nuclear integrity [74]. The notion that 
nuclear stress may monitor the early stages of the disease is 
supported by the similar redistribution of B23 (NPM1) found 
in the progressive HD model of mice and in skeletal muscle 
sampling of early HD patients [75]. 

CONCLUSION
Neuronal damage following genetic disorders as well 

as exposure to chemicals and drugs or environmental 
contaminants activates proinfl ammatory cytokines, mainly 
associated with oxidative stress, and can aff ect the Central 
Nervous System (CNS) by activating pro-infl ammatory and 
reactive oxygen species pathways are negatively aff ected. 
Glial activation and the eff ects of oxidative stress on SN / 
VTA neurons stem directly from the state of gradually dying 
noradrenergic cells and their loss of function, including 
the secretory function of noradrenaline. Mechanisms 
observed before degeneration of the dopamine system 
may have the potential for early detection of PD. Limiting 
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mutations to central noradrenergic neurons allows focusing 
on the description of long-term functional changes in 
the dopaminergic system, which should be considered. 
In addition, such a model should allow the testing of 
potential neuroprotective drugs, which reverse the onset of 
dopaminergic neuronal degradation. Extensive results may 
provide an opportunity to anticipate new strategies for drug 
development. Overall, new evidence that the noradrenergic 
system controls the function of dopaminergic neurons and 
homeostasis may open up new avenues for research into the 
causes of early PD onset.
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