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GYNECOLOGY  WOMENS HEALTH AND CARE  
CARDIOVASCULAR DISEASES  

Preeclampsia is a pregnancy-specifi c disease associated with inadequate placental formation, 
chronic infl ammation, and maternal vascular dysfunction. Preeclampsia affects about 5-8% of 
pregnant women and it is a prevalent cause of maternal mortality. The level and composition of 
exosomes in the maternal circulation are altered in preeclampsia, and studies have shown that the 
major source of this greater level of exosomes is the placenta. We propose that exosomal contents 
from the placenta trigger maternal infl ammation and vascular dysfunction, thereby exacerbating the 
disease progression. This mini-review will focus on the content of placental exosomes and how they 
could contribute to the development of preeclampsia. 

ABSTRACT

PREECLAMPSIA
Preeclampsia, previously known as toxemia, is a pregnancy condition that 

usually begins after 20 weeks of pregnancy, during labor, or early postpartum [1]. 
This condition is characterized by hypertension, proteinuria, and organ dysfunction 
and in more severe cases, restrictions in fetal growth in an otherwise healthy 
woman [2]. It could also be characterized by swelling of the hands, legs, and feet 
and has been known to lead to blood clotting impairment [3]. It aff ects 5-8% of all 
pregnancies and about 1 in 25 pregnancies in the United States [4]. Preeclampsia 
is a major contributor to fetal and maternal morbidity and mortality in pregnancy 
[5,6]. Some severe cases of preeclampsia lead to eclampsia, which is characterized 
by seizures and coma. Currently, the only eff ective treatment is the delivery of the 
fetus and the placenta. In addition to the cardiovascular risks to the mother and 
fetus during pregnancy, preeclampsia is independently associated with a higher 
risk of cardiovascular disease later in maternal life [7-9]. 

PATHOPHYSIOLOGY OF PREECLAMPSIA
The exact cause of preeclampsia is not known, and as preeclampsia is a complex 

clinical syndrome, several pathogenetically important events in the development of 
preeclampsia have been described in the etiology of the disease [10]. These events 
include aberrant vascular remodeling and poor cytotrophoblast invasion of the 
spiral arteries. This shallow remodeling leads to decreased uteroplacental perfusion 
and consequently preeclampsia [10]. Studies of basal plates of placentas of abnormal 
pregnancies demonstrated that the spiral arteries remain as small resistance 
vessels and do not transform into large, dilated vessels with the increased fl ow at 
reduced pressure as in unaff ected pregnancies. It was observed that the remodeling 
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of the spiral arteries that occurs in normal pregnancy was 
inadequate or completely absent in preeclampsia [11]. 
Furthermore, the defective uteroplacental blood fl ow leading 
to preeclampsia has been studied in animal models. Findings 
suggest that although, the initiating event is thought to be 
decreased uteroplacental perfusion as a result of aberrant 
vascular remodeling, the main cause of this aberrant 
remodeling is currently unknown, and several maternal 
factors have been proposed to contribute to clinically 
overt preeclampsia, including environmental, genetic and 
immunologic factors [12,13]. 

Another potentially important contributor to the 
pathophysiology of this condition is the increased levels of 
circulating soluble fms-like tyrosine kinase-1 (sFlt-1). sFlt-
1 is an antiangiogenic factor expressed as an alternatively 
spliced variant of Vascular Endothelial Growth Factor 
Receptor 1 (VEGFR-1) that lacks both the transmembrane 
and cytoplasmic domains. sFlt-1 binds VEGF and Placental 
Growth Factor (PlGF) and blocks their angiogenic eff ects 
of VEGFR. sFlt-1 may also form a heterodimer with the 
surface membrane VEGFR-1 and inhibit its post-receptor 
signaling actions [14].  An imbalance between sFlt-1, 
VEGF, and PlGF that favors anti angiogenesis has been 
reported in preeclampsia [15-17]. Endoglin (Eng) is another 
antiangiogenic soluble factor that is highly expressed in 
vascular endothelial cells and, along with sFlt-1, has been 
related to cardiac dysfunction during pregnancy in human 
mothers with preeclampsia [18]. Eng interacts with sFlt-1 to 
increase its eff ects on angiogenesis [19]. 

Innate and adaptive immunity in preeclampsia 

It has been suggested that preeclampsia is an immune 
disease and is initiated by the generation of Damage-
Associated Molecular Patterns (DAMPs) in response to 
aberrant placentation, oxidative stress [20], and endothelial 
dysfunction. DAMPS activate the innate immune system 
through recognition by Toll-like Receptors (TLRs) [21]. 
DAMPs are usually contained within the cells, but during 
some disease conditions where the cell is stressed or 
damaged, these molecules are expressed on the cell surface 
and also diff use out of the cell into the extracellular space 
where they are transported to other cells and are sensed 
by the TLRs as danger and the immune system is activated 
[22]. Studies have shown that TLRs are expressed in the 
human placenta and contribute to the establishment of 
pregnancy [23]. Furthermore, excessive activation of TLRs 
during pregnancy triggers preeclamptic-like symptoms in 
rodents [24,25]. Double-Stranded RNA (dsRNA) is believed 
to be the most potent viral trigger of the innate immune 
signaling [26]. Viral dsRNA is sensed by TLR3 which also 
recognizes endogenous dsRNA [27]. Activation of TLR3 
using the exogenous ligand, poly I:C led to the development 
of preeclamptic-like symptoms in both pregnant rats and 
mice [28]. However, the molecular mechanism underlying 
the development of hypertension was not elucidated and 
warrant further investigation. 

Exosomes exert effects in distant tissues

Exosomes are extracellular vesicles released by all 
cells, they are composed of a lipid bilayer containing 
transmembrane protein and they carry nucleic acids, 
proteins, lipids, and metabolites into the extracellular 
environment (Figure 1). They are mediators of near and 
long-distance intercellular communication in health and 
disease and aff ect various aspects of cell biology [29]. They 
were fi rst described in 1981 by Trams et al. in cultures of 
normal or neoplastic cells [30]. These cells were able to 
exfoliate micro-vesicles of 500-1000 nm diameter and 
contained a second population of vesicles of about 40nm 
diameter, with the ecto-enzyme activity of 5’-nucleotidase. 
The micro-vesicles (of about 40 nm diameter) released from 
the plasma membrane were then referred to as exosomes 
[30]. Exosomes are generally classifi ed as extracellular 
vesicles measuring between 30-150nm diameter, that are 
formed by late endosomes [31]. Exosome formation occurs 
from endosomes. First, the lumen of the endosomes becomes 
full of intraluminal vesicles, this leads to an inward budding 
and forming small vesicles containing endosome-derived 
molecules known as the multivesicular bodies or MVB 
[32]. Secondly, the small vesicles then fuse to the plasma 
membrane and are then secreted into the extracellular 
space through exocytosis [33]. Exosomes are taken into 
target cells by diff erent mechanisms including endocytosis, 
micropinocytosis, phagocytosis, and internalization [34]. 
Exosomes mediate selective intercellular communication, 
and the eff ect of the exosome on a target tissue is determined 
by the composition of the proteins/glycoproteins present on 
the surface of the exosomes and the target cells [35].

Apart from mediating intercellular communication, 
exosomes carry out other physiological and 
pathophysiological functions. These functions include 
the progression of cancer [36-39]. Identifi cation of key 
proteins and microRNA (miRNAs), circular RNAs (circRNA), 
or long non-coding RNA (lncRNA) associated with 
diff erent diseases including type 2 diabetes, nephropathy, 
aldosteronism, atherosclerosis, and several types of cancer 
(bladder, gastric, prostate cancers) [40-44]. The studies 
in cancer convincingly demonstrated that exosomes could 
have signifi cant eff ects in distant tissues.

 Studies have shown that injected exosomes are 
effi  cient at entering other cells and can deliver a functional 
cargo with minimal immune clearance upon exogenous 
administration. Importantly, the cargos within an exosome 
refl ect the pathophysiological state of the originating cell 
[45]. The cargos can activate cell surface receptors or/and be 
taken up by or incorporated into recipient cells, leading to 
changes in the cellular phenotypes. Lee, et al. [46] recently 
demonstrated that the mitochondria dsRNA generated by 
alcohol-associated stress in hepatocytes is delivered by 
exosomes to activate TLR3 in Kupff er cells. Activation of 
TLR3 by the exosomal dsRNA stimulates the production of 
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Figure 1 Biogenesis, secretion, and constituents of exosomes.

IL-1. A study also demonstrated that plasma exosomes 
regulate systemic blood pressure in rats [47], but the 
mechanism was not elucidated.

Exosomes are released in pregnancy - what happens 
in preeclampsia and what do they do?

The concentration of circulating exosomes during 
normal pregnancy is increased, and it has been reported 
that the increase in circulating exosomes is greater in 
preeclampsia [48,49]. Furthermore, the concentration of 
circulating exosomes in hypertensive pregnant women 
directly correlates with the disease severity [48,50]. 
Apart from this increase, the exosomal contents are also 
altered in preeclampsia. Evidence for this was provided 
by groups who studied exosomes from normotensive and 
preeclamptic women and observed that exosomes-released 
sEng and sFlt-1 were increased in the maternal circulation 
of preeclamptic women [51,52]. Furthermore, the altered 
exosomal contents in preeclampsia are biologically active 
and stimulate adverse eff ects including attenuating the 
proliferation, migration, and tube formation of human 
umbilical vein endothelial cells in vitro, and in a mouse 
model, exosomes from preeclamptic women caused vascular 
dysfunction, elevated their blood pressure, and these mice 
also had a decreased body weight compared to their controls 
[52]. The placenta secretes exosomes into the maternal 
circulation [53]. However, other sources of the maternal 

circulating exosomes include B cells, T cells neutrophils, 
and endothelial cells [49]. The concentration of exosomes 
originating from the placenta increases in a time-dependent 
manner throughout pregnancy [53]. The exosomes are taken 
up into the target maternal cells by endocytosis. 

These changes in the release, concentration, 
composition, and bioactivity of exosomes in preeclampsia 
versus normotensive pregnancy have led to exosomes 
being currently evaluated as potential biomarkers for 
preeclampsia. Also, exosomes can be isolated from the blood 
of women in early pregnancy; they can be targeted in the 
intervention of preeclampsia and also in the early prediction 
of the development of the disease. Taken together, these 
data suggest that exosomes could mediate or facilitate the 
maternal vascular dysfunction observed downstream of 
placental ischemia.

CONCLUSION AND FUTURE DIRECTIONS
The exact role of exosomes in the pathophysiology of 

preeclampsia is not yet completely understood, but the 
current knowledge indicates that exosomes play a role in 
the pathophysiology of the disease. Apart from aberrant 
placenta formation and vascular remodeling and maternal 
vascular dysfunction, chronic infl ammation is one of the 
major hallmarks of preeclampsia [54]. In preeclampsia, 
it has been reported that placental ischemia results in the 
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release of pro-infl ammatory cytokines [55], these cytokines 
interact with the maternal vascular wall to induce maternal 
vascular dysfunction [10]. The contents of the placenta-
derived exosomes are also altered induces adverse eff ects on 
maternal function and pregnancy outcomes  [56]. The role of 
exosomes from non-placental cells in mothers aff ected by 
preeclampsia has also not been well-defi ned.

Exosomes derived from preeclamptic women must be 
studied to reveal the state of the parents’ cells, reveal the 
specifi c alterations in the exosomal contents associated with 
preeclampsia, and pave the way in developing therapeutic 
targets for this disease.
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