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GENERAL SCIENCE

MATERIAL SCIENCE

The Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) models now have 
a wide range of applications; however, new methodologies are required due to the complexity in 
understanding their results. This research presents a generalized version of quantum similarity fi eld 
and chemical reactivity descriptors within the density functional theory framework. 

By taking reference compounds, this generalized methodology can be used to understand the 
biological activity of a molecular set. In this sense, this methodology allows to study of the CoMFA in 
quantum similarity and chemical reactivity. It is feasible to investigate steric and electrostatic effects 
on local substitutions using this method. They were considering that how these methodologies could 
be used when the receptor is known or unknown.

ABSTRACT

INTRODUCTION
Our research group demonstrated that the Comparative Molecular Field Analysis 

(CoMFA) and the Comparative Molecular Similarity Indexes Analysis (CoMSIA) 
could be interpreted in terms of Molecular Quantum Similarity (MQS) and Density 
Functional Theory (DFT)-based reactivity descriptors in two recent articles [1]. 

Since the CoMFA and CoMSIA analyses have numerous applications in Three-
Dimensional Quantitative Structure-Activity Relationships (3D QSAR) studies, 
additional considerations about these approaches in the DFT context are provided 
in this research.

The MQS proposed by Carbó and co-workers within the DFT approach is a 
signifi cantly applicable fi eld [2-6]. The density function is an essential variable in 
the MQS fi eld [7-11]; thus, it is plausible to assume that it can be linked to chemical 
reactivity descriptors such as chemical hardness (ɳ), softness (S), electrophilicity 
(ω), and Fukui Functions.

Utilizing a series of pyrrolidine carboxamides studied by Kumar and Siddiqi 
[12], we intend to demonstrate new insight on the comprehension of the CoMFA 
results within the DFT context using this hybrid methodology (connecting the MQS 
and chemical reactivity). With cross-validated and conventional correlation values 
of 0.626 and 0.953, they reported a statistically signifi cant CoMFA analysis. As a 
result, the main goal is to understand this correlation between the MQS fi eld and 
chemical reactivity descriptors and to demonstrate novel connections between 
these two methodologies that can be applied to the CoMFA analysis.
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THEORETICAL DETAILS
Quantum Object Sets (QOS)

Considering the following set:  IZ = z I= 1,N , where N 

is the Cartesian product of two sets:  Z P M   is the set of 

the objects, and  1,IM m I N   is the set of tags. Therefore 

we can write:  1,  N:z ;I I II p m Z    [2,13]. In this sense, 

a (QOS) is a tagged set: Q P S   consisting of a group of 

submicroscopic objects and a set of quantum mechanical 

Density Function (DF):  1,S I NI  as elements of the 
tag set. 

We can defi ne a central averaged DF of this type using the 
Hilbert semi space tag set S and the expression:

1 1 1
C I C I I C

I I I
N N N                     (1)

The DF Minkowski norms are defi ned as follows:

1, : ( )I I I
D

I N r dr             (2)

Therefore, the centroid DF can describe the arithmetic 
average of all involved quantum objects' particles. We defi ne 
tag set H associated with the DF set S to relate the shape 
functions associated with the quantum set, resulting in:
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1 1,
I I I I

I I I I
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          (3)

The shape centroid function can be written as follows 
using equation 3:
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1 1 1

C I C
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N N N
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Local molecular quantum similarity measure: A 
generalized version

Intending to obtain a generalized Hirshfeld approach 
to our systems, we considered the electron density ρ(r) in 
contribution ρ x

1 (r), where x is an atom [4,14-18]. These 
contributions enable the defi nition of an atom in a reference 
system and the investigation of its (dis)similarity on a 
molecular set (i.e., substituent eff ect analysis) [19]. 
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We can represent the global Carbó index as local 
contributions as equation 5 is a generalized Hirshfeld 
approach to our systems, where x is given as an atom [1]. It 
is possible to investigate the local similarity and substituent 
eff ects on some reference compounds in this context (QOS).

Reactivity descriptors

The CoMFA analysis is based on physical-chemistry 
properties related to electrostatic and steric eff ects. In this 
way, global chemical descriptors like chemical potential, 
hardness, and electrophilicity index, as well as local 
reactivity descriptors such as the Fukui Functions, can 
be linked to these properties [1]. Global reactivity indices 
provide information on a chemical system's reactivity or 
stability in the face of external disturbances in the DFT 
context.

The chemical potential (μ) is defi ned as the tendency of 
electrons to leave the electron cloud and is calculated using 
the following equation:

2
H L 




            (6)

where (εH) and (εL) are the energy of the (HOMO) and (LUMO), 
respectively [20,21].  According to Pearson et al. investigation 
[22], chemical hardness is defi ned using equation 14.

L H     (7)

From equation (7), we obtain the softness [23] as:

1S


            (8)

Finally, the electrophilicity index (ω) [24,25] is defi ned 
using equations 6 and 7. This index is defi ned as a measure 
of the system's stabilization energy when electrons saturate 
it from the external environment, and it is calculated as 
follows:

2

2



          (9)

Finally, the Fukui Functions (equations 10 and 11) are 
defi ned as the derivative of the electronic density with 
respect to the number of electrons when the external 
potential is kept constant:

       1 1k N N k k
k

f r r q N q N 


          
 

 (10)

       1 1k N N k k
k

f r r q N q N 


          
 

 (11) 

The electron population at the kth atomic site in a 

molecule is defi ned by qk. ( kf
 ) and ( kf

 ) are governing the 

susceptibility for the nucleophilic and electrophilic attack, 
respectively [26-29].  

Quantum operators to calculate local similarity

The Dirac delta distribution 1 2 1 2( , ) ( , )r r r r   [30], also 

known as the overlap molecular quantum similarity measure, 
is one of the most commonly used operators in quantum 
similarity measure and related the volume associated with 
the overlap of the two densities ρA (r) and ρB (r):
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It is possible to collect information about the electron 
concentration in the molecule using equation 12, which 
also indicates the degree of overlap between the compared 
compounds.

The Coulomb operator 1 2( , )r r , defi ned as 
1

1 2 1 2( , )r r r r


  
 
is another widely used operator in quantum 

chemistry. It represents the electronic Coulomb repulsion 
energy between molecular densities ρA(r) and ρB(r) is written 
as:
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According to the Schwartz integral, the Carbó index 
is limited to the range (0,1), where CAB = 0 indicates 
dis(similarity) and CAB = 1 indicates self-similarity.

2
2 2( ) ( ) ( ) ( )A B A Br r dr r dr r dr              (14)

Quantum similarity matrix

The quantum similarity Matrix can be related to a [N × 
N] metric associated with a (QOS) tag set formed of quantum 

mechanical density function  1,IS I N   as:
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Z z z z
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Rows and columns are equivalent in equation 15. In this 
regard, we have the following:
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       (16)

The symmetry of the matrix Z is another signifi cant 
property, according to:

, :T
IJ JII J Z Z  Z Z            (17)

Considering these properties associated with the 
similarity matrix, we can express the local molecular 
similarity measures using the overlap and coulomb operators 
(equations 12 and 13).

Joining QS and chemical reactivity

It is conceivable to consider a set of specifi ed vectors and 
assign a center to this QOS, according to Carbó, et al. [31] 
investigation. Therefore, Fukui Functions can be used to 
represent a QOS as follows:

 1,M I I N               (18)

The fi rst order densities in equation 23 can be constructed 
using a set of Molecular Orbital (MO) of shape function 
contributions as follows:

 1,IP I I I N          (19) 

P elements represent the squared MO modules. Using 
these considerations, we can relate the frontier orbital 
(HOMO and LUMO) to the QOS. We can construct a linear 
combination of P to the fi rst-order density functional by 
defi ning {w1} as the number of occupations in the MOs as 
follows [32]:

I I
I

w          (20)

where (i) ν is the number of electrons: I
I

w  . (ii) Where 

the Minkowski norms of the elements of the shape function 

set P are normalized to unity, belonging to the MO set 

normalization  : 1II   .

Therefore we can use an average function to defi ne a 
centroid shape function

1 1C I C
I

N             (21) 

Each element of set P can be compared to the centroid 
function in this way and can be constructed as:

 : 1,I I C II Z I N                (22)

Finally, the Minkowski pseudonorm of the centroid 
shape function set Z can be written as:

: 0I I C I CI                 (23)

Therefore the shifted elements have a null Minkowski 
pseudonorm, where the shape function is comprised of N 
linearly independent elements. Using these relations, we 
can make quantum similarity utilizing the Fukui Functions 
on the QOS, taking into account a reference compound.                           

/ /
/

2 2/ /

( ) ( )
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     (24)

Scales of convergence quantitative [1] can construct 
using equation 24, as long as this equation depicts a possible 
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connection between quantum similarity and chemical 
reactivity. It can also be used to determine quantum similarity 
based on local chemical reactivity (Fukui functions). The 
contour maps generated by the CoMFA and CoMSIA results 
can be related to these measures. In addition to what is 
provided by the 3D-QSAR studies, the other advantage of the 
proposed methodology is demonstrating a possible way to 
quantify the biological activity of the compounds.

COMPUTATIONAL DETAILS, MOLECU-
LAR SET, AND ALIGNMENT METHOD

Table 1 contains the given molecular set, and All the 
compounds were optimized using B3LYP exchange-
correlation functional [33(a,b)] at 6w-31G(d,p) level of 
theory, and gaussian 09 was used to perform all of the 
optimizations [34].

The Topo-Geometrical Superposition Algorithm (TGSA) 
[35,36] was utilized for the alignment that tries to overlap as 
many structural elements as possible. Chemical bonds and 
sequences of two chemical bonds are represented by these 
structural elements, which always involve the same type 
of atoms in the molecules being compared. The structure 

selected (compound 1) for the superimposition process is 
shown in fi gure 1.

RESULTS AND DISCUSSION
Table 1 displays the Carbó values using equation 12, which 

is frequently associated with the steric eff ect, representing 
a possible form to quantify the steric map reported by the 
CoMFA data.

The compound with the highest local similarity regard 
to compound 1 (reference compound) is compound 2 with 
a value of 0.985 and an euclidean distance of 0.721; the 
compound with the lowest similarity is compound 5, with 
a value of 0.672 and an euclidean distance of 3.899 (Table 
2). In the halogen group, these results indicate the lowest 
steric eff ects. However, the higher steric eff ects are on the 
group (methyl trifl uoride, compound 5) with more size, 
but not on the group isopropyl, compound 7 with less size. 
The similarity between compounds 5 and 7 is 0.739 with a 
euclidean distance of 3.539; this similarity value is consistent 
with their respective pIC50 values of 5.312 and 5.226.

The Coulomb values are shown in table 3 using the 
Coulomb operator (equation 13), which is associated with 
electrostatic eff ects and can be linked to the electrostatic 
map in the CoMFA analysis.

Table 4 shows that compound 3 has a higher electronic 
similarity concerning the reference compound 1 with 0.998 
and a euclidean distance of 4.114 (Table 5). Compound 3 has 

Figure 1 The structure selected (compound 1) for the superimposition process.

Table 1: Pyrrolidine Carboxamides as inhibitors of enoyl Acyl Carrier protein reductase from Mycobacterium tuberculosis studied by Kumar and Siddiqi [12].

Compound R pIC50
b CoMFA predictionc Residual valor

1 Ha 4.972 5.051 -0.079

2 Br 6.050 5.880 0.170

3 Cl 5.869 5.864 0.005

4 CH3 4.774 4.867 -0.093

5 CF3 5.454 5.312 0.142

6 NO2 4.975 4.985 -0.010

7 CH(CH3)2 5.255 5.226 0.029
aThis is the reference compound.
bExperimental values.
cCoMFA results (see Reference [12])
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Table 2: Overlap matrix to the local similarity values using equation 12.

Ca 1 2 3 4 5 6 7

1 1.000

2 0.985 1.000

3 0.984 0.998 1.000

4 0.981 0.990 0.994 1.000

5 0.672 0.716 0.707 0.740 1.000

6 0.882 0.919 0.916 0.913 0.695 1.000

7 0.822 0.840 0.841 0.841 0.739 0.793 1.000

aCompound

Table 3: Euclidean distance matrix to the local similarity using the overlap operator.

Ca 1 2 3 4 5 6 7

1 0.000

2 0.721 0.000

3 0.755 0.279 0.000

4 0.821 0.586 0.468 0.000

5 3.899 3.658 3.711 3.514 0.000

6 2.212 1.851 1.889 1.913 3.886 0.000

7 2.566 2.444 2.438 2.436 3.539 2.938 0.000

Table 4: Coulomb matrix to the local similarity values using equation 13.

Ca 1 2 3 4 5 6 7

1 1.000

2 0.997 1.000

3 0.998 0.999 1.000

4 0.996 0.998 0.999 1.000

5 0.925 0.947 0.943 0.945 1.000

6 0.978 0.990 0.990 0.989 0.959 1.000

7 0.965 0.976 0.976 0.976 0.965 0.977 1.000

Table 5: Euclidean Distance using the Coulomb operator.

Ca 1 2 3 4 5 6 7

1 0.000

2 3.996 0.000

3 4.114 0.720 0.000

4 4.138 1.264 0.827 0.000

5 19.924 16.956 17.361 17.135 0.000

6 10.985 7.458 7.438 7.498 14.751 0.000

7 13.164 10.804 10.812 10.9561 13.699 10.407 0.000

a substituent chlorine which has an inductive eff ect. On the 

other hand, compound 5 has the lowest electronic similarity 

with 0.925 and a euclidean distance of 19.924 since compound 

5 has the group methyl trifl uoride and therefore presents 

a signifi cant inductive eff ect. The chemical descriptor 

supported on DFT is used to analyze the electrostatic eff ects. 

The global reactivity indexes are shown in table 6.

The chemical potential (μ = -3.198 eV), Hardness (ɳ = 
5.529 eV), softness (S = 0.181), and electrophilicity ω = 0.965 
eV of reference compound 1 are shown in tables 6,7 and these 
values are matched to an experimental pIC50 (4.972). This 
reference compound has greater hardness values (ɳ = 5.529 
eV), while compound 6 has the lowest hardness (ɳ = 4.529 eV) 
with a softness value of (S = 0.221 eV-1) and simultaneously 
it has higher electrophilicity (ω = 2.156 eV). This fi nding can 
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Table 6: Global reactivity indexes in eV. and the softness is in eV-1.

Compound C. potential (μ) Hardness (ɳ) Softness (S) Electrophilicity (ω)

1a -3.266 5.529 0.181 0.965

2 -3.498 5.478 0.183 1.117

3 -3.497 5.494 0.182 1.113

4 -3.198 5.498 0.182 0.930

5 -3.781 5.500 0.182 1.300

6 -4.419 4.529 0.221 2.156

7 -3.197 5.509 0.187 0.928

aReference compound.

Table 7: Fukui Functions are associated with the asymmetric carbon atom. See 
fi gure 1.

Compound f+ (r) b f- (r) b

1a 0.034 0.039

2 0.070 0.048

3 0.068 0.042

4 0.053 0.026

5 0.026 0.155

6 0.023 0.082

7 0.047 0.025
aReference compound.
bAsymmetric carbon atom.

be explained by the presence of the nitro group, which is an 
electron-withdrawing group. Chemical potential (μ = -3.498 
eV), hardness (ɳ = 5.478 eV), softness (S = 0.183 eV-1) and an 
electrophilicity (ω = 1.117 eV) are all in compound 2 with the 
highest experimental activity (pIC50 = 6.05). These global 
descriptors suggest a local analysis, and the Fukui Function 
on the asymmetric carbon atom is employed to build this 
local study (Figure 1).

CONCLUSION
This research reports new insights on the generalized 

relationship between quantum similarity and chemical 
reactivity. This hybrid methodology allows us to investigate 
steric and electrostatic eff ects in quantitative scales of 
convergence and substituent eff ects, among others. In this 
way, the CoMFA and CoMSIA results can be modeled by 
combining MQS and chemical reactivity; in this context, 
these outcomes can be applied in QSAR correlations and 
docking studies and to gain a better understanding of the 
biological activity of a molecular set. Considerating that 
these approaches can be utilized when the receptor is known 
or unknown.
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