BIBLIOGRAPHIC INFORMATION SYSTEM

Journal Full Title: Journal of Biomedical Research &

Environmental Sciences

Journal NLM Abbreviation: J Biomed Res Environ Sci

Journal Website Link: https://www.jelsciences.com

Journal ISSN: 2766-2276

Category: Multidisciplinary

Subject Areas: Medicine Group, Biology Group, General,

Environmental Sciences

Topics Summation: 128

Issue Regularity: Monthly

Review Process type: Double Blind

Time to Publication: 7-14 Days

Indexing catalog: Visit here

Publication fee catalog: Visit here

DOI: 10.37871 (CrossRef)

Plagiarism detection software: iThenticate

Managing entity: USA

Language: English

Research work collecting capability: Worldwide

Organized by: SciRes Literature LLC

License: Open Access by Journal of Biomedical Research & Environmental Sciences is licensed under a Creative Commons Attribution 4.0 International License. Based on a

work at SciRes Literature LLC.

Manuscript should be submitted in Word Document (.doc or

.docx) through **Online Submission** form or can be

mailed to support@jelsciences.com

Vision 🥸

Journal of Biomedical Research & Environmental Sciences main aim is to enhance the importance of science and technology to the scientific community and also to provide an equal opportunity to seek and share ideas to all our researchers and scientists without any barriers to develop their career and helping in their development of discovering the world.

LETTER TO EDITOR

Artificial Intelligence in Cranial Surgeries

Sabrina Rahman¹, Raphia Rahman², Mohammed Maan Al-Salihi³, Ivan David Lozada-Martinez⁴ and Md Moshiur Rahman⁵*

- 1 Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
- ²Rowan School of Osteopathic Medicine, Stratford, New Jersey
- ³Medical Doctor, College of Medicine, University of Baghdad, Baghdad, Iraq
- ⁴Medical and Surgical Research Center, School of Medicine, University of Cartagena, Cartagena, Colombia
- ⁵Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh

Artificial Intelligence (AI) is a broad phrase that refers to any machine's activity that would otherwise need human intellect. Recent technological advancements have closed the gap between human and machines, allowing computers to replicate natural human intellect and produce "artificial intelligence". Neurosurgery has benefited the most from AI-driven technology advancements in the medical field. It's frightening to think that a computer may be taught or self-taught how to do spine or brain surgery. Embracing this technology will allow us to provide the best possible care for our patients, and its potential role in neurosurgery is intriguing.

The use of technology in neurosurgical treatments, particularly AI and robots, is on the rise [1,2]. In particular, research on techniques to intelligently automate the diagnosis and treatment of movement disorders and epilepsy has exploded in the field of stereotactic and functional neurosurgery. Robotassisted surgery, automated preoperative planning, diagnostic brain imaging categorization, surgical candidate selection, prediction of postoperative patient outcomes, and identification of epileptic zones within the brain are some of the critical neurosurgical uses of AI [3]. AI in brain surgery has mainly stayed outside of the clinical arena, with most descriptions coming from research situations. AI basically mimics the cognitive modules of the biological brain, such as information collection, processing, learning, and reasoning [4]. This AI computational method helps surgeons diagnose tissue samples quickly and accurately in the operating theatre. A tiny sample can be submitted for optical imaging if the surgeon believes they are nearing the tumor's edge. In roughly 90 seconds, a computer can evaluate it and detect tumorous tissue with a 94.6% accuracy [5]. This AI model might help surgeons detect what would otherwise be unseen, giving them more confidence in determining the edge of an ill-defined tumour border.

In the last half-century, the exponential increase of peer-reviewed literature and complicated datasets has begun to saturate the physician's capacity to keep up-to-date. Neurosurgery may use AI to help patients get the best possible results. Future research designs should compare the effectiveness of clinical professionals alone vs AI-assisted therapies to see if patient outcomes improve. Further study, funding, and interdisciplinary partnerships are required for the broad application of AI in neurosurgery in the future.

*Corresponding author

Md Moshiur Rahman, Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh

E-mail: dr.tutul@yahoo.com

DOI: 10.37871/jbres1321

Submitted: 28 September 2021

Accepted: 29 September 2021

Published: 29 September 2021

Copyright: © 2021 Rahman S, et al. Distributed under Creative Commons CC-BY 4.0 ⊚€

OPEN ACCESS

NEUROLOGICAL DISORDERS BRAIN DISORDERS

VOLUME: 2 ISSUE: 9

References

- Sheetz KH, Claflin J, Dimick JB. Trends in the Adoption of Robotic Surgery for Common Surgical Procedures. JAMA Netw Open. 2020 Jan 3;3(1):e1918911. doi: 10.1001/jamanetworkopen.2019.18911. PMID: 31922557; PMCID: PMC6991252.
- 2. Lane T. A short history of robotic surgery. Ann R Coll Surg Engl. 2018 May;100(6_ sup):5-7. doi: 10.1308/rcsann.supp1.5. PMID: 29717892; PMCID: PMC5956578.
- Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and Artificial Intelligence in Neurosurgery: A Systematic Review.
- Neurosurgery. 2018 Aug 1;83(2):181-192. doi: 10.1093/neuros/nyx384. PMID:
- 4. Dorfer C, Minchev G, Czech T, Stefanits H, Feucht M, Pataraia E, Baumgartner C, Kronreif G, Wolfsberger S. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017 May;126(5):1622-1628. doi: 10.3171/2016.5.JNS16388. Epub 2016 Aug 5. PMID: 27494814.
- Rughani Al, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, Tranmer Bl. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010 Sep;113(3):585-90. doi: 10.3171/2009.11.JNS09857. PMID: 20020844.

How to cite this article: Rahman S, Rahman R, Al-Salihi MM, Lozada-Martinez ID, Md Rahman M. Artificial Intelligence in Cranial Surgeries. J Biomed Res Environ Sci. 2021 Sept 29; 2(9): 849-850. doi: 10.37871/ibres1321, Article ID: JBRES1321, Available at: https://www.ielsciences.com/articles/ibres1321.pdf