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REVIEW ARTICLE

Hydrogels are water-swollen networks, which are cross-linked structures consisting of 
hydrophilic polymers. They are made three-dimensional by the creation of the cross-links by joining 
them through covalent or ionic bonds. Hydrogels have been used in various areas including industry 
and medicine due to their excellent characteristics such as high swelling capacity, high content of 
water, compatibility with other biological molecules, controlled chemical and physical properties, 
high mechanical integrity and biodegradability. They have been the center of attention of researchers 
from the past 50 years because of their promising applications in industries and other areas. They 
are used in different fi elds, in medicine, in the diagnosis of the diseases, in culturing of cells, in 
injuries as wound healers, in cosmetics, in skin diseases like pruritis, in environmental pollution 
reduction and other miscellaneous applications such as in diapers for babies and sanitary products. 
Extensive literature can be found on the subject of hydrogels. The present review discusses the 
history, description of hydrogels, basic properties, classifi cation, different techniques or methods of 
hydrogel synthesis and the areas in which hydrogels fi nd applications.
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INTRODUCTION
History

The word “hydrogel”, as stated by Lee, Kwon and Park, has been used since 
1894 but that material was not a hydrogel but a colloidal gel (of inorganic salts) [1]. 
These gels are made of polymeric matrices but they do not dissolve instead they 
swell [2]. Anyhow, the fi rst accurate hydrogel having a cross-linked network was 
reported by Wichterle and Lim in 1960 for the fi rst time [3]. It was a polyhydroxy 
ethyl methacrylate hydrogel that was synthesized with the aim of its usage in 
permanent contacts. Hydrogels are the fi rst to be synthesized for uses inside the 
patient. After that the researches on the topic of hydrogels and their biomedical 
applications started to rise [4]. Some infl uential and important work was performed 
on hydrogels in the 1980s by Lim and Sun [5]. 

They have been used in medicine from about fi fty years ago. Their history goes 
way back although the discussion in literature involves more information about 
their use in medical and pharmaceutical areas. The history of hydrogels has been 
classifi ed in three diff erent generations. The fi rst generation included cross-
linking techniques that involved chemical alterations. These modifi cations were 
applied to achieve high swelling and good mechanical characteristics [6]. The 
second generation contains materials that are sensitive to and respond to specifi c 
stimuli, for example, pH, concentration, and temperature. The second-generation 
hydrogels were made to overcome the problems of mechanical strength. Finally, 
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the third generation then focused on investigating and 
developing stereo complex materials and hydrogels that 
were cross-linked through physical interactions. This 
development led to the development of “smart hydrogels” 
that are polymeric matrices with a broad spectrum of 
tailorable attributes [7]. These gels maintain their stability 
in the fl uctuating condition such as temperature [8]. 

WHAT ARE HYDROGELS?
A hydrogel can be described as a three dimensional 

network formed by hydrophilic polymers which can expand 
in water. These polymers can hold copious amounts of water 
without disrupting the structure [9]. Some researchers defi ne 
it as a swollen polymeric material retaining a signifi cant 
volume of water in it without itself being dissolved in 
water [10]. Hydrogels are novel drug deliverers that can 
aid in the delivery of several kinds of drug molecules either 
therapeutic or diagnostic nature. They are also suitable 
carriers for immunological products such as vaccines and 
other biological products like plasmas and seras and valvular 
intestinal cells [11].

Hydrogels, owing to their high water load, show 
fl exibility that is similar to natural tissue. They owe this 
property to the existence of diff erent functional groups in 
them that are hydrophilic. These groups include:

• -COOH

• -NH2

• -OH

• -CONH

• -CONH2

• -SO3H [12]

A polyampholyte hydrogel consists of negative and 
positive ions are bound to the backbone [13]. The resistance 
of hydrogels to dissolution occurs due to the cross-linkage 
between the chains in the network [14]. This network can 
include both natural and synthetic materials.

The synthetic hydrogels are gradually taking the place of 
the natural ones during the last two decades due to the better 
properties presented by the synthetic hydrogels for instance, 
high water absorption capacity and incredible strength. They 
show a well-defi ned morphology which can also be modifi ed 
or altered to get desired traits such as strength, functionality 
and biodegradability [15].

Hydrogels can undergo transitions such as gel-sol 
transition or transitions in the volume phase as a result 
of diff erent biochemical stimuli and physical or chemical 
stimuli [16]. Physical stimuli comprise electric fi elds, 
temperature, pressure, light intensity, the composition of 
the solvent and magnetic fi eld. In contrast, the chemical and 
biochemical stimuli involve pH, chemical compositions, and 
various ions. In most cases, these transitions are reversible. 
A hydrogel’s response to stimuli is dependent on the charge 

density, nature of monomers, and cross-linkage [17]. The 
charged hydrogels swell when they are exposed to the 
electrical fi eld and undergo shape changes [18].

Classi ication of hydrogels

The main constituents of the hydrogels are biopolymers 
or polyelectrolytes [19]. Hydrogels can be divided into 
diff erent types according to the source from which they have 
been and the ionic charges, appearance, confi guration and 
type of cross-linkages. These are classifi ed based on below 
fi elds.

Source:

i. Natural origin: These hydrogels contain natural 
polymers, for instance, proteins (gelatin and 
collagen) and other polysaccharides (starch, agarose, 
and alginate) [20].

ii. Synthetic origin: These are constituted from 
synthetic polymers that are synthesized by chemical 
polymerization methods [21].

Nature of hydrogel: Hydrogels can be of diff erent types 
in nature [22]. 

i. Physical gels: These transitions from liquid to gel in 
turn of environmental changes (pH, temperature or 
pressure) or mixing. Physical gels are also called as 
reversible gels.

ii. Chemical gels: These gels involve covalent 
bonding for mechanical integrity and resistance to 
degradation. These gels are also called as permanent 
gels.

iii. Biochemical gels: These involve biological agents 
such as amino acids or enzymes as participants of the 
gelation process.

Confi guration: Hydrogels can be put into diff erent 
classes depending on their morphology such as:

i. Amorphous (non-crystalline)

ii. Semicrystalline

iii. Crystalline [23]

Physical appearance: Hydrogels can be organized into 
various classes based on how they appear, these are as 
follows:

i. Matrix 

ii. Film

iii. Microsphere 

This appearance usually depends on the polymerization 
method being used in the preparation process [24].
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Type of cross-linking: The cross-link junctions in the 
hydrogels can have chemical or physical nature.

i. Chemical cross-linkage has a permanent junction. 

ii. Physical cross-linkages have transient junctions 
[25].

Polymeric composition: Classifi cation into diff erent 
types on the method of their preparation is as follows:

Homopolymeric hydrogels: Contain a polymeric 
network  having a single  monomer species [26]. These 
hydrogels can be used as scaff olds for the promotion of cell 
adhesion and the regeneration of spinal cord cells [27].

Copolymeric hydrogels: Comprise of two or more 
species of diff erent monomers with a minimum of one 
lipophobic component. These components are usually 
arranged in diff erent confi gurations, such as random or 
block confi guration along the polymer network chain. For 
example, cellulose and CMC were used in the manufacture of 
PVP based hydrogels [28]. 

Semi-Interpenetrating polymeric hydrogels: This 
network is formed by penetration of one linear chained 
polymer into another cross-linked network and they have 
no chemical bonds in between them [29].

Interpenetrating Polymeric Hydrogels (IPN): This class 
has two synthetic or natural independent and cross-linked 
polymeric components in a network confi guration [30]. 

Electrical charge:

i. Nonionic - having no charge [31].

ii. Ionic - having either a negative or positive charge.

iii. Amphoteric electrolyte (Ampholytic).

iv. Zwitterionic [32].

PROPERTIES OF HYDROGELS
Hydrogels are fi nding many applications in domestic 

and industrial areas due to its properties.

Hydrogels have:

 Both solid and liquid-like properties

 High biocompatibility [33]

 Maximum absorption capacity 

 Preferred particle size and desired porosity

 Shrink on drying

 Responsive to stimuli [34]

Swelling

Hydrogels are polymers with cross-linkages that become 

swollen in a liquid medium [35]. They can absorb from 
a minimum of 10 to 20% to 1000 folds of their dry weight 
present in water. When a dry hydrogel soaks up the water, 
the molecules infi ltrating the hydrogel matrix moistens the 
polar hydrophilic groups in it. After the hydration of these 
oppositely charged groups, the network swells and exposure 
to the hydrophobic groups occurs [36].

Mechanical properties

These properties of the hydrogels can vary relying on the 
purpose of use of the substance. A gel with high rigidity can 
be obtained by increasing the cross-linkages in it. In contrast 
this rigidity can be reduced by heating these materials. Such 
as gelatin shows an increase in the Young Modulus through 
cross-linking [37]. The Young Modulus is the result of the 
interaction between the gel matrix and solution, i.e., water. 
The hydrogel cross-linking density can be assessed by 
employing Flory’s theory and Young’s Modulus [38]. 

Porosity and permeation

The factors that aff ect the hydrogel matrix include the 
interconnections between the pores, the average size of the 
pore and the distribution of pore size. All these factors add 
up to form a signifi cant parameter called tortuosity [39]. The 
infl uencing factors for the distribution of pore-size are as 
follows:

 Chemical cross-link concentrations of the polymer 
strands. 

 Physical entanglements present in the polymer 
strands. 

 Net charge present on the polyelectrolyte hydrogel. 

The infl uencing factors of the porous structure of a 
hydrogel include:

 Type of the surrounding solution.

 Diff used ionic solutes in solution. 

 Dissolved uncharged solutes.

The high porosity enable them to uptake large amounts 
of water and swell [40]. The porous microstructure of 
hydrogels can be determined by various methods [41]. 

Cross linking

The hydrogels are characterized by networks of polymers 
formed by cross-links. The properties of the hydrogels are 
altered by the presence of the number of cross-links [42]. 
The cross-links are of various types and they vary according 
to the type such as if they are bound physically or chemically 
[43]. The tailorable characteristics of hydrogels come 
from the type of cross-linkage and that is how they can be 
optimized [44].
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METHODS OF PREPARATION OF HY-
DROGELS

They consist of cross-linked water interacting network 
of polymer that gives it an elastic structure. To produce a 
hydrogel such techniques are used that can form a cross-
linked polymer [45]. A standard method to produce cross-
linkage is the free-radical polymerization. Some ways to 
cross-link water-soluble linear polymers include:

Linking the polymer chains via a chemical reaction

Use of ionizing radiation for the generation of main-
chain free radicals that can recombine as cross-link 
junctions

 Physical interactions, i.e., electrostatics [24]

As stated in the above classifi cation, they are divided 
into three classes based on the technique used in their 
preparation. These are as follows: 

Homopolymers

Cross-linked homopolymers hydrogels are usually used 
for contact lens production and one way to prepare it is by 
selecting poly (2-hydroxyethyl methacrylate) as a monomer, 
cross-linking agent; polyethylene glycol dimethacrylate and 
UV-sensitive initiator; benzoin isobutyl ether. The cross-
linked fi lm is formed in de-ionized water and then treated 
with UV radiation ( = 253.7 nm) for 20 minutes. The next 
step is the immersion in water for 24 hrs until fully saturated 
and non-toxic [46]. 

Another way to synthesize the poly HEMA hydrogel is the 
use of low molecular weight cross-linking agent. The use of 
this agent forms a soft hydrogel containing about 30-40 
percent of water and high permeation ability of oxygen. This 
makes it suitable for contact lenses, soft tissue implants, 
and carriers for drug delivery [47]. 

Polyethelene glycol-based hydrogels that are responsive 
to external stimuli are suitable for effi  cient and controlled 
drugs, biomolecules, proteins, and growth factor release. A 
novel technique of PEG hydrogel formation, introduced by 
Lin and Anseth, is called as ‘Click’ chemistry. This method 
has the advantage of rapid, specifi c reaction and versatility 
in bio-conjugation [48].

Polyvinyl alcohol (PVA) hydrogels formation includes 
interchanging cycles of freezing and thawing. This method 
of PVA material preparation provides greater mechanical 
strength as compared to UV radiation. Polyvinyl Pyrrolidone 
(PVP) hydrogels can be synthesized by radiation technique 
and used in wound healing [49].

Co-polymeric hydrogels

They comprise of two monomer types from which one is 
lipophobic (Water-loving). Gong et al. produced the triblock 
Poly(Ethylene Glycol)-Poly(caprolactone)-Poly(Ethylene 
Glycol) (PECE) co-polymeric biodegradable hydrogel for 
drug delivery [50]. The ring-opening copolymerization 
technique was implied for -caprolactone. For triblock 
synthesis the initiator used was mPEG, the catalyst was 
stannous octoate and the coupling agent was hexamethylene 
diisocyanate. When applied in-situ, this co-polymeric block 
forms a hydrogel.

In another study, Kim and his co-workers synthesized 
copolymers of methacrylic acid (MAA) with PEG-PEGDA by 
using the technique of free-radical photo-polymerization. 
They used tetra (ethylene glycol) dimethacrylate as the 
cross-linking agent and 1-hydroxycyclohexyl phenyl ketone 
as an initiator. A nitrogen atmosphere was maintained for 
30-minutes, and the process was done under UV light. The 
hydrogel formed was loaded with insulin successfully [51].

Inter Penetrating Network (IPN) 

IPNs are formed by combining two polymers intimately 
when one polymer is synthesized in the presence of the other 
polymer. This is done by immersion of a pre-polymerized 
hydrogel in a solution of monomers and an initiator. The 
main advantages of IPNs are resilient mechanical properties, 
more effi  cient drug loading, and controllable physical 
properties [52].

An example of IPN is the modifi cation of 
polyethyleneglycol diacrylate hydrogel with -chitosan. 
This modifi cation resulted in improved biocompatibility. 
This was done by using a 2 percent chitosan solution for 
mixing a 10 percent aqueous PEGDA solution. UV radiations 
were used for the formation of cross-links leading to the 
formation of IPN hydrogel.

Kim et al. attempted to extend the applications of 
another classic biomaterial; Polyurethane (PU), by making 
its IPN with Polyacrylamide (PAA) [53]. The result was an 
IPN hydrogel that could control water absorption. For this 
purpose, both PAA and PU were mixed and exposed to UV 
radiation. The cross-linking agents used for this process 
were methylenebisacrylamide and vinylpyrrolidone. These 
types of IPN-PU hydrogels fi nd applications in DDS, artifi cial 
muscles, wound dressing material, and sensor systems [54].

METHODS OF CROSS LINKING
Cross-linked networks of natural biopolymers such as 

alginate, carboxymethylcellulose, and chitosan have been 
seen. Synthesis polymers such as polyvinyl pyrrolidone [55], 
polythene glycol [56], polyacrylic acid [57], polyethylene 
oxide [58], polymethacrylate [59] and polylactic acid [60] 
have been cross-linked to form hydrogels. Several methods 
for the synthesis of hydrogels include physical crosslinking 
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[25], chemical cross-linking [61], grafting polymerization 
[62], and radiation cross-linking [63]. These modifi cations 
can enhance the viscoelasticity and other properties for 
applications in the pharmaceutical and biomedical fi eld [64]. 

Physical cross-linking

Physical or reversible gels have been a topic of interest 
because they do not need cross-linking agents for their 
production and they are relatively easy to produce. Various 
methods used for cross-linking to produce physical gels 
include:

Heating or cooling a polymer solution: The hot 
solutions of carrageenan or gelatin are cooled to form cross-
linked gels. The gels formation occurs because of the helix 
formation and association between the helices [65]. Hennink 
and Nostrum reviewed the polyethylene glycol-polylactic 
acid hydrogels formed by physical cross-linking by simply 
warming the solutions of polymers [25].

Ionic Interactions: This method includes the addition 
of divalent and trivalent counter ions to cross-link the 
polymers. Some examples of hydrogels formed by ionic 
interaction include chitosan-glycerol phosphate salt [66] 
and chitosan-polylysine [67]. 

Complex Coacervation: Literature has also shown 
another method that involves the sticking of oppositely 
charged polymers and forming complexes that depend on 
the pH and concentration of the solutions. Esteban et al. 
formed a polyionic hydrogel by coacervating xanthan and 
chitosan [68]. Polyionic complexes form as the proteins are 
positively charged below their isoelectric points and tend to 
associate with the negatively charged hydrocolloids [69].

Hydrogen Bonding: Hydrogels formed by hydrogen 
bonding involve reducing the pH of polymer solutions that 
have carboxyl groups. Takigami et al. reported the formation 
of CMC hydrogel by hydrogen bonding after dispersing CMC 
in a solution of HCL 0.1M [70]. 

Freeze Thawing: Freeze-thaw cycling is another 
way of physically cross-linking the polymers to obtain 
hydrogels. The principle of this technique is the microcrystal 
formation after freeze-thawing. Giannouli et al. performed 
cryogelation of the xanthan polymers to form hydrogel [71].

Chemical cross linking

It can be done by various techniques that involve the 
grafting process or linkage of two polymer chains by a cross-
linking agent. 

Chemical cross-linkers: Cross-linking agents such 
as glutaraldehyde [72] and epichlorohydrin [73] were 
employed to synthesize hydrogels containing both natural 
and synthetic polymers. This technique includes the 
addition of new molecules for producing cross-linked 
chains in the polymeric chains. Literature also shows the 

use of 2-acrylamido-2-methylpropanesulfonic acid for 
cross-linking acrylic acid and -carrageenan for producing 
biodegradable hydrogels [74]. Carrageenan hydrogels also 
fi nd applications in the industry for the immobilization of 
enzymes [75]. Epichlorohydrin can be used as a cross-linker 
for synthesizing hydrogels from cellulose by heating and 
freezing techniques [76].

Grafting: Grafting is done by the polymerization of a 
monomer on a preformed polymer backbone. Grafting can 
be divided into two types; chemical grafting of radiation 
grafting. Chemical grafting involves the activation of 
polymer chains by chemical reagents for example the use of 
N-vinyl-2-pyrrolidone to graft starch with acrylic acid [77]. 
Said et al. prepared CMC hydrogel by using electron beam 
radiation [62]. 

Radiation Cross-linking

Another technique for the preparation of these systems 
is by cross-linking the polymers. This method involves the 
use of free radical production in the polymer followed by its 
exposure to a high energy source. It is a useful method as 
it does not require any chemical additives. It is also a cost-
eff ective process for the modifi cation of biopolymers to be 
used for biomedical applications [78].

CHARACTERIZATION OF HYDROGELS
Morphology, elasticity, and the swelling property 

are various parameters on which the hydrogels can be 
characterized. The morphology indicates the structure of 
the hydrogel or its porosity. The swelling property indicated 
the mechanism by which the drug is released from the 
polymeric material, and the third parameter elasticity shows 
the strength and stability of the polymeric network and 
drug carriers respectively [79]. These three parameters are 
discussed in detail in the following paragraphs.

Morphological characterization 

The morphology of hydrogels includes its shape, 
form, and structure and it is determined through a 
stereomicroscope. The texture of the polymers such as 
starch, can be assessed by the SEM technique [80]. 

X-ray diffraction

Xray diff raction is employed to evaluate the molecular 
organization and nanoscale structure of an organic hydrogel 
in its hydrated form. It may also be used to the transition of 
polymers from their crystalline form to another during the 
processing [81]. 

In-vitro release study for drugs 

The release studies of drugs from the hydrogel carriers 
are essential to understand the mechanism of release. The 
duration taken by the hydrogel to release the drug is also of 
signifi cant importance [82].
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FTIR 

The IR absorption spectra of the hydrogels changes if 
there is any alteration in their morphology. These changes in 
the spectra can be determined by using FTIR. The appearance 
of bands shows the cross-linking of the polymers [83]. 

Swelling behavior

The following equation can calculate the swelling 
percentage (S%) of the hydrogels:

S (%) = (Ws – Wd)/ Wd *100, 

Wd: Dry hydrogel 

Ws: Swollen hydrogel [84].

Rheology

The viscosity of the hydrogels can be evaluated by the 
Cone plate viscometer at a constant temperature, i.e., 4°C 
[85].

Measurement of gel content 

The gel content can be determined by putting the sample 
in 200 mesh and washing it three times with distilled water 
following extraction at 80°C in distilled water for 24 h. The 
remaining gel was dried. 

Gel content can be measured gravimetrically as follows: 

Gelation (%) = Wd/ Wo*100, 

Wd: Weight after extraction 

Wo: Initial weight [86].

APPLICATIONS OF HYDROGELS
Hydrogel applications are widespread in various fi elds, 

due to their compatibility with diff erent usage conditions 
and their specifi c structures. The fl exibility of hydrogels 
makes them easy to be availed in various areas that range 
from biological to industrial areas. Due to their non- 
toxic nature and chemical compatibility with biological 
environments their use extends to medical sciences. Some 
primary uses of the hydrogels in industry and medicine are 
as following fi elds.

Drug delivery

The astounding characteristics of hydrogels make them 
a signifi cant candidate for controlled drug delivery systems 
(Systems that deliver the drug at a predetermined rate and 
time) [87]. This can help to overcome various problems that 
may occur while handling some formulations. 

The hydrogels are suitable for the loading and proper 
release of many drugs because of their high porosity (Due 
to cross-linking and swelling) that, in turn, give them the 

property of high permeability [88]. The main advantage is 
that they can be used for sustained release of drugs with a 
high concentration to a specifi c area in the body [89]. Studies 
have also suggested the use of hydrogels for the long term 
delivery of drugs by gastro-retentive mechanisms [90].

To enhance the binding of a drug to the matrix of 
hydrogel (To extend the drug release time), both chemical 
and physical strategies can be used [91]. The drug can be 
released from hydrogels according to diff erent local changes 
(stimuli) such as temperature, pH, physical stimuli, or some 
specifi c enzymes.

The examples of such hydrogels are as follows:

• pH-sensitive hydrogels: pH is one of the most 
crucial parameters for DDS, as pH changes occur at 
many body sites such as the stomach or other specifi c 
tissues [92]. To form pH-sensitive hydrogels, both 
basic and acidic polymers are used, for example: 

Acidic Polymers: PAA, Sulfonamide containing polymers 
[93]

Basic: Ethyl methacrylate, Polyvinyl pyridine [94] 

• Temperature-sensitive hydrogels in DDS: 
Temperature-sensitive hydrogels are responsive to 
changes in the temperature of the body. These can 
be formed by using thermosensitive polymers, for 
example, Poly N-isopropylacrylamide and Poly N, 
N diethyl acrylamide [95]. Methylcellulose has also 
been seen to be triggered by thermal transitions [96].

Dyes and heavy metal ions removal

The waste-water of many industrial procedures can 
cause heavy metal pollution, which can be a severe threat 
to the health of the public and the eco-systems. Thus the 
removal of these dangerous heavy metal ions is of great 
scientifi c interest. Hydrogels fi nd applications in this regard 
as well. They act as adsorbents to remove heavy metals and 
toxic compounds. The functional groups such as carboxyl, 
phosphonic, sulfonic, and nitrogen on the surface of 
hydrogels can favor the absorption of the metal ions [97]. 
However, the use of hydrogels for heavy metal ion toxicity 
on large scales is not economical [98].

Studies have reported that hydrogels are excellent dye 
adsorbents. They can absorb materials with high amounts of 
methylene blue dye. Polyelectrolytes have been reported to 
be signifi cant in heavy metal ions removal as they can bind 
to the oppositely charged metal ions forming complexes 
[99].

Other examples of hydrogels that can be used for metal 
ion removals are starch, chitosan, cellulose derivative, and 
alginate. Other phenomena like chelation and sorption also 
aid hydrogels in removing metal ions [100].
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Biosensors

A biosensor is a combination of chemical and physical 
sensors [101]. It is a device used to sense and report a 
biophysical property of any system. A biosensor has a 
biological recognition part known as a bioelement which 
makes analyzing biological information possible. Biosensors 
fi nd applications in the following areas: 

• Point-of-care testing 

• Environmental monitoring

• Diagnostics [102]

Bioelement has diff erent structures similar to enzymes, 
living cells or tissues and antibodies but the critical aspect is 
its specifi city [103]. The biological molecules can be coupled 
with sensors by various methods such as covalent bonding, 
entrapment into membranes or matrix and physical 
adsorption. Hydrogels have also been manipulated to be 
used in diagnostic purposes or tests such as ECG (Used as 
medical electrodes).

The hydrogels can be used in biosensors by coating them 
on the sensing device (Such as an electrode) or by acting as a 
3D matrix or supporting bioelements. Hydrogels can protect 
the sensor parts in a biosensor by preventing undesirable 
interactions with cells or biological molecules. Various 
studies have been performed that depict the potential of 
hydrogels for cell culture. These can be used in endothelial 
injury, cardiovascular diseases in which the blood vessels 
may be reformed to treat the disease, the formation of 
proteins that can accelerate the growth process and bone 
remodeling [104].

They can give an excellent environment to enzymes or 
other biomolecules for the preservation of their activity 
and functional structure. Hydrogels can also immobilize 
biosensing elements. Some examples for diff erent biosensors 
in hydrogel matrices include glucose-responsive hydrogels, 
DNA, antibody-antigen based sensors and oligonucleotides 
[105].

Living sensors are another group of biosensors, in 
which hydrogels are combined with living microorganisms 
or cells forming living cell-polymer composites [106]. 
The 3D structures, biocompatibility, and the high water 
content make the hydrogels suitable for the entrapment for 
cells or bacteria. An example of the living sensor is Arxula 
adeninivorans LS3 (A biological recognition element) used to 
determine the biodegradable pollutants in the waste water 
[107]. 

Tissue engineering

Tissue engineering refers to the combination of materials, 
cells, and engineering for the improvement or replacement 
of biological organs. This requires the searching and fi nding 
proper cell types and a suitable scaff old for culturing them 

in appropriate conditions. Tissue engineering off ers the 
potential for regeneration of almost any tissue or organ in a 
human body [108]. 

Hydrogels are an excellent option for a scaff old material 
due to the similarity of their structures to many tissues. 
They provide the advantage of minimal invasion for delivery 
and easy processing in mild conditions [109].

The material and scaff old design selection depend upon 
several variables, such as physical properties, biological 
properties, and mass transfer properties depending on the 
environment in which it will be placed and the intended 
application [110]. For example, the type of scaff old and its 
structure varies for the production of artifi cial skin and that 
for artifi cial bone.

Hydrogels for this purpose can belong to either synthetic 
or natural materials. It is easy to control the chemistry as 
well as the structure of synthetic hydrogels, which in turn 
can help in altering their properties. The natural polymers 
forming hydrogels have favorable in vivo interaction, for 
example, chitosan and alginate [111].

• In tissue engineering applications, the hydrogels 
have three purposes, which are:

• Agents for fi lling vacant spaces (Act as bioadhesives, 
bulking agents, preventing adhesions)

• Carriers for bioactive molecules

• 3D structures for supporting cells 

• Hydrogel scaff olds based on polymers such as 
alginate, collagen, and chitosan are generally used 
as bulking agents [112]. Synthetic hydrogels such as 
polyethylene glycol act as anti-adhesive materials 
in conditions such as in the prevention of post-
operative adhesions.

When acting as vehicles for stabilizing and delivering the 
bioactive molecules to target tissues, the hydrogels allow the 
drug delivery to only the desired tissues minimizing toxicity 
to the other tissues. Some of the examples of their carrier 
hydrogels include ionically cross-linked alginate hydrogels 
and glutaraldehyde cross-linked collagen sponges [113]. PVA 
is another hydrophilic polymer that is fi nding applications 
in drug delivery [114].

Hydrogels can act as 3D networks for supporting cells 
and the formation of an ideal tissue because of being able 
to be highly hydrated. This makes the hydrogels suitable for 
the goal of tissue development [115].

Blanchard et al. used the keratin-based hydrogels for 
cell scaff olds in tissue engineering [116]. Chitosan-based 
hydrogels such as beta-glucan have also been studied as 
candidates for 2D and 3D scaff olds [117]. 
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Injectable hydrogel for regeneration of the spinal 
cord 

SCI defi ned as a complex degenerative disorder that is 
caused by growth inhibition due to trauma to the tissues of 
the spinal cord [118]. The use of hydrogels can sometimes 
recover these injuries. The viscoelastic hydrogels are 
converted from a liquid to a gel after being injected into the 
site of injury. Small spaces or transected parts are formed in 
SCI, which are fi lled by hydrogels [119].

These hydrogels can be loaded with therapeutic agents 
before injecting them into the site of injury. However, the 
properties of these hydrogel scaff olds should resemble that 
of spinal cord tissues [120].

The requirements for the designing parameters include: 

• Creating a scaff old for cellular infi ltration

• Maintenance of bioactivity

• Provision of sustained delivery of loaded agents

• Tunable and local delivery of therapeutic agents

Design parameters include:

• Designed scaff old’s mesh size,

• Mechanical characteristics of the gel material

• Biocompatibility of materials used for injured site

• Conditions of mild solidifi cation 

• Suitable porosity

• Rate of degradation 

• Bioactivity 

Injectable hydrogels can either be natural or 
synthetic, having their pros and cons. Examples of some 
injectable hydrogels include glycidyl methacrylate and 
polyamidoamine macromers (After undergoing gelation 
process) [121]. Injectable hydrogels are patient-friendly as 
they are minimally invasive. They provide an easy mixing 
of cells or bioactive molecules with the polymer solutions 
which in turn can quickly form the 3D microenvironments in 
desired shapes [122].

Enzyme mediated injectable hydrogels such as hydrogels 
containing tyramine conjugated polymers are used in drug 
delivery systems and as scaff olds due to their high elasticity 
[123]. Studies have also been done for the role of hydrogels 
having antigen-antibody interactions in the formation of an 
injectable 3D network [124].

Contact lenses

Synthetic hydrogels have bio-applications in 
ophthalmology, especially in contact lenses [125]. The 
concept of contact lenses was fi rst described in 1508 by 

Leonardo da Vinci. Polyhydroxyethyl methacrylate lenses 
were developed in the late 1960s by Professor Otto Wichterle 
which then started the era of soft lenses [126].

An acceptable contact lens has a high oxygen permeability 
because when a contact lens is placed on the cornea that 
two main problems that occur include the prevention of 
oxygen exchange and hypoxic stress (disturbance of natural 
physiological metabolism of the cornea) [127]. A proper 
choice of contact lens shape and material is necessary for 
minimizing these problems [128]. 

Hydrogels are the best solution for this problem because 
they can cover the following requirements: 

• Superior mechanical characteristics

• Oxygen permeability 

• Surface wettability

• Good optical properties

• Hydrolysis stability 

• Sterilizing 

• No toxicity 

• Biological tolerance towards living cells [129].

Typical hydrogels used for contact lenses include 
dihydroxy methacrylates, acrylamides, methacrylic acid 
and many other monomers [130]. Their right swelling and 
permeability properties make them suitable and effi  cient for 
use in lenses [131].

Colon speci ic drug delivery 

Hydrogels also fi nd applications in the colon-specifi c 
drug delivery. For this purpose, polysaccharides are used as 
polysaccharidase enzymes are present in high concentration 
in the colon. These hydrogels provide tissue specifi city to the 
drugs in the colon [132]. The controlled delivery of Ibuprofen 
has been achieved by hydrogel of guargum with cross-
linking agent glutaraldehyde [133]. Dextran based hydrogels 
are also found to be promising as carriers of therapeutic 
agents for colon-specifi c drug delivery [134].

Cosmetology

Hydrogels are also good candidates for cosmetic use as 
they impart emulsion stability and conditioning [135]. They 
are useful as carriers for cosmetic agents in delivery and 
protection purposes as they liquefy at body temperature 
[136]. They are also used for aesthetic purposes [137]. 

Topical drug delivery

Hydrogels are also good candidates for the topical 
delivery of various therapeutic agents [138]. Hydrogels have 
been made to deliver a synthetic corticosteroid Desonide 
which is used as an anti-infl ammatory. These hydrogels 
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provide moisturizing properties and prevent scaling and 
dryness [139]. Antifungal formulations like cotrimazole 
have also been developed as hydrogel formulations [140]. 
Hydrogels containing extracts of medicinal plants have been 
synthesized for the treatment of topical dermatitis [141]. 
Polyacrylic polymers have been found to have promising 
results in topical drug delivery due to their bioadhesive 
properties [142].

Modi ied dosage forms

Biomacromolecules such as heparin can be manufactured 
as modifi ed dosage forms [143]. Insulin can be delivered 
to the absorption site with hydrogels by entrapping in a 
polymer matrix. Cross linkers such as N, N’ – methylene 
bisacrylamide have been found to provide maximum 
entrapment effi  ciency. Thus these hydrogels prevent the 
unwanted degradation of drugs like insulin [144].

Wound healing

Hydrogels have been developed to treat cartilage defects 
by using modifi ed polysaccharide occurring in the cartilage 
[145]. The aldehyde and methacrylate groups functionalizing 
the polysaccharides react with the proteins in the skin tissue 
forming a network where chondrocytes are released [146]. 
Hydrogels containing honey in a matrix are also being used 
in wound healing [147]. Cell adhesive hydrogels made of PVA 
and gelatin in addition to blood coagulants have been shown 
to ensure better eff ects [148].

Agricultural Uses

Hydrogels not only have biomedical applications but 
also have been used in the agriculture. They can be used to 
prevent soil erosion as they can hydrate the soil and improve 
infi ltration in soil. Hydrogels are considered as eco friendly 
as they can prevent the drying of plants during drought 
periods. Pesticides have been encapsulated by utilizing 
hydrogels to improve plant growth and avoid pests. It has 
also been claimed that hydrogels decrease the leaching of 
the fertilizers [149]. 

Food Industry

Hydrogels are being used in the food industry for 
various purposes as well. A group of hydrogels called as the 
bio-based hydrogels are used for packaging various food 
products. Foods such as vegetables or fruits that can become 
dry because of loss of water may be packed in bio- based 
hydrogel packing which will then prevent dehydration and 
keep them fresh. This biodegradable packaging also helps to 
prevent the food from contamination by various microbial 
organisms [150]. 

Miscellaneous 

Hydrogels also fi nd applications in various products 
related to hygiene especially in the diaper industry. Super 
absorbent hydrogels contain such polymers that can provide 
excellent retention properties that are utilized making 

the diapers for children. A super absorbent cross- linked 
polymer starch-g-polyacrylate has been used since 1978 for 
this purpose in Japan [151]. The diapers and other hygiene 
products made of SAP hydrogels provide the advantage of 
moisturized skin, no rashes and improved skin health. These 
hydrogels based diapers also prevent contamination, germ 
colonization and reduce leakage. The weight of diapers could 
also be reduced by using these hydrogels other disposable 
products such as napkins, bed sheets for hospitals and 
sanitary towels [152]. 

LIMITATIONS OF HYDROGELS
In addition to all the merits related to hydrogels, there 

are some demerits or limitations as well. However, the 
number of advantages of the hydrogels as carriers for drugs 
relatively high as compared to the demerits. Most of these 
limitations can be overcome but some substantial challenges 
remain to exist with the hydrogels. The main drawback of 
the hydrogels is that they are expensive. The loading of drug 
in the hydrogels is a complex process and requires skilled 
labour and mechanical devices for manufacturing. They are 
very fragile, so they careful handling. The sterilization of the 
hydrogels is a complicated process. The concentration of the 
cross-linkers in the hydrogels is vital as a high concentration 
may lead to toxicity [153].

CONCLUSION
Hydrogels belong to a class of polymeric materials 

either natural or synthetic; having the ability to entrap 
large volume of water in their matrix due to their swelling 
properties and specifi c and fl exible structures. They can be 
characterized and evaluated by various tests such as their 
morphology, appearance, viscosity (rheological properties), 
microscopic techniques for their crystalline structures, their 
release characteristics for the drugs entrapped in them, 
the way they accumulate water in them and swell various 
times their size, the content of gel or the gelation capacity. 
They have found a wide variety of applications because 
of their ability to modify the polymeric structures thus 
helping them to obtain the desired functionality. The areas 
of hydrogel applications are rapidly expanding day by day. 
Hydrogels can also be formulated and designed to respond to 
specifi c stimuli. These hydrogels are referred to as stimuli-
responsive hydrogels. These stimuli-responsive hydrogels 
can be employed in biosensors such as for the detection 
of ulcers or other diseases. They are also being employed 
in tissue regeneration making them good candidates for 
the treatment of tissue injuries such as spinal cord injury. 
They have diff erent applications that involve their use in 
the reduction of environmental waste, including the heavy 
metals that are usually present in waste-waters, also they 
are being used in a sanitary product like towels, napkins, 
and baby diapers. Among their properties, biodegradability 
and biocompatibility makes them an excellent candidate for 
biological and industrial applications; for example, they can 
act as materials for toxic pollutants removal. 
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