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REVIEW ARTICLE

Background: Telomeres are the ends of a chromosome and play a fundamental role as 
vanguards contra the chromosomal decay. Due to the inability of DNA polymerase to replicate 
chromosomal ends, a reduction in telomeres length happens after each cell division. The existence 
of shorter telomeres in older people is related to diminish immune functions. Viral infections able 
to stimulate remodeling of cells, stress responses, and telomere shortening. Moreover, telomere 
shortening can be caused by extrinsic environmental variables which induce oxidative stress under 
conditions of infl ammation. 

Aim: To identify the correlation between telomere shortening and susceptibility to Novel 
Coronavirus Disease 2019 (COVID-19). In addition to clarifying changes in telomere length according 
to the viral infection, the effect of sex and age differences in telomere length in confi rmed positive 
COVID-19 cases are also reviewed. 

Conclusion: There is a correlation between telomere length and COVID-19 infection with higher 
susceptibly of elderly patients and males due to shortening in their telomere length. Approximately 
53% of (111,428) infected cases (≥ 50) years old are males, and 47% of (111,428) infected cases (≥ 
50) years old are females.
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2019; CRP: C-Reactive Protein; DNA: Deoxyribonucleic Acid; DDR: DNA Damage 
Response; IL: Interleukins; IL-1: Interleukin1 Beta; IL-6: Interleukin-6; NF-b: 
Nuclear Factor-b; NF-B: Family of Transcription Factors; PI3k: Phosphoinositide 
3-Kinase; RNA: Ribonucleic Acid; ROS: Receptive Oxygen Species; SARS-Cov: Severe 
Acute Respiratory Syndrome Coronavirus; STAT1/STAT3: Signal Transducer and 
Activator of Transcription 1/3; TERRA: Telomere Repeat-Containing RNA Termed; 
Tert: Telomerase Reverse Transcriptase; Terc: Telomerase RNA Component; 
TNF-: Tumor Necrosis Factor ; TRF: Telomere Restriction Fragment; WHO: 
World Health Organization

INTRODUCTION
Telomere is a non-coding part of DNA sequences at the end of each chromosome. 

Mammalian telomeres contain 5-8 nucleotides with reduplicated sequences of 
TTAAGGG. Their functions include recognizing the end of chromosomes, avoiding 
the end of the chromosome from being adhesive, protecting the chromosomal 
ends from inaccurate connection and corruption, appropriate chromosome site 
in a nucleus, and synthesizing the end of chromosomes in DNA replication [1]. 
Telomeres are a simple DNA sequenc composed of a large number of repeats called 
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(TTAGGG) in vertebrates mainly humans. Telomeres are 
surrounded by a protein component called shelterin or 
telosome. Shelterin or telosome has an important function 
in the regulation of telomere length and chromosomes’ 
protection [2,3]. Telomeres and their associated proteins 
can protect every chromosome end against terminal DNA 
degeneration, chromosomal recombination, and fusion 
[4]. Moreover, accelerating telomere shortening is induced 
by infl ammation, exposure to infectious pathogens, and 
oxidative stress, which damage telomeres and diminish their 
repair mechanisms. Thus, people who were exposed to viral 
infections have shorter telomeres. Infectious diseases, for 
example, decrease telomere length and, hence, increasing 
the susceptibility to infection [5].

Coronaviruses are a large family of viruses that aff ect 
the respiratory tract of animals and humans [6]. They can 
be zoonotic, which means they can be transmitted from 
animals to humans. Common signs and symptoms of 
the disease include respiratory indications, fever, cough, 
weakness of breath, and diffi  culty breathing. In other 
severe cases, the disease can lead to pneumonia, Severe 
Acute Respiratory Syndrome (SARS), kidney failure, and 
even death [7]. Furthermore, coronaviruses are enveloped 
positive-stranded RNA viruses and characterized by club-
like spikes that extend from their surface, an abnormally 
huge RNA genome, and a unique replication technique, 
which belongs to the family “Coronaviridae” and the 
order “Nidovirales” [6]. According to WHO, COVID-19 fi rst 
appeared in December 2019 in Wuhan, China. Bioinformatic 
analyses revealed that COVID-19 has characteristics that 
are typical to the coronavirus family and belong to the 
ß-coronavirus 2B lineage. On the other hand, the genome 
sequence of the COVID-19 virus and other available genomes 
of ß-coronavirus showing the closest relationship with the 
bat SARS-like coronavirus strain BatCov ratg13, identifi ed 
96% [8].

The primary purpose of this review is to identify the 
correlat5on between telomere shortening and susceptibility 
to COVID-19 infection, by investigating the changes in 
telomere length according to variations in age, sex in 
confi rmed cases with COVID-19 infection, and the relation 
between the infl ammatory markers and telomere length 
during respiratory viral infection.

Telomere length changes according to age and sex

Many studies have shown that age, gender, current 
health status, and mortality may aff ect telomere length 
that varies within the same group [9]. Telomere shortening 
is considered as an important biomarker (biological 
thermometer) [10]. Since it might be related to the replication 
problem phenomena, which says that DNA polymerases are 
not able to replicate in the linear chromosome that leads the 
telomeres to shorten after each cell division, consequently, 
this may be followed by cell death [11]. 

Telomere and sex

There is an association between sex and telomere length 
[12]. Previous studies clarifi ed the association between sex 
and telomere length especially in leukocyte telomeres which 
are longer in women than men [13]. Several hypotheses have 
been postulated to explain this association, for example, 
due to the action of estrogen [14]. An estrogen-responsive 
element is present in Telomerase Reverse Transcriptase 
(hTERT), subsequently, estrogen might stimulate telomerase 
to add telomere repeats to the ends of chromosomes [15]. 
Telomeres are particularly sensitive to oxidative stress [16]. 
Women produce fewer reactive oxygen species than men due 
to high level of estrogen in female than males [15]. So, it has 
been suggested that women might also metabolize reactive 
oxygen species better because of the antioxidant properties 
of estrogen [15]. At birth, one study found that there was a 
diff erence in telomere length between the sexes with female 
newborns have longer telomeres than males [17]. An animal 
study on mice (males and females) indicated that the repeated 
experimental inoculation resulted in systemic infection and 
disease with higher susceptibility in males than females [5]. 
Moreover, they examined in the previous study the changes 
in telomeres in WBCs over nine months and fi ve consecutive 
infections and found that the experimentally infected males 
showed signifi cantly greater telomere attrition compared to 
female infected controls; unlike males, the infection did not 
aff ect the telomeres of the females, this sex-diff erence in 
telomere dynamics could be due to the higher susceptibility 
of males leading to greater infections than females [5]. There 
are concerns about the robustness of telomere length as a 
biomarker of aging [18,19]. In conclusion, telomere length is 
longer on average in females than males and the strength of 
these associations varies by the measurement methods but 
not by age group [13].

Telomere and age

A steady decline in telomere length at a relatively 
constant rate with advancing age has been demonstrated 
in various cross-sectional studies. This decrease in length 
is further accelerated with the onset of several diseases 
that develop with aging [20]. Various studies on human 
models have attempted to correlate between telomere 
length with age; a study accentuated that individuals with 
long telomeres lived longer than their counterparts with 
the same age and had shorter telomeres [21]. However, the 
presence of short telomeres among young people [22,23] 
might result from many factors as genetics modifi cations, 
[21,22] chronic psychological stress [24,25], older paternal 
age at conception [26], poor health behaviors, and oxidative 
stress. The reason behind these discrepancies is still unclear 
and may have several causes. A conclusion from previous 
various studies is that telomere length correlates with 
somatic cell growth till puberty and with cellular senescence 
after puberty [27]. 
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Characteristics of COVID-19 infection

At the end of December 2019 in Wuhan, China, Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
appeared with confi rmed human cases [28,29]. It spreads 
rapidly worldwide causing a pandemic of Coronavirus 
Disease (COVID-19). Symptoms range from fever and 
breathing diffi  culty to pneumonia and death [30]. Patients 
have COVID-19 show increased leukocyte numbers, and 
elevated levels of plasma proinfl ammatory cytokines in 
blood. Cytokines and chemokines which noted in patients 
with COVID-19 infection include [ IL1-, IL1RA, IL7, IL8, IL9, 
IL10, basic FGF2, GCSF, GMCSF, IFN, IP10, MCP1, MIP1, 
MIP1, PDGFB, TNF, and VEGFA ]. Some severe cases show 
high levels of pro-infl ammatory cytokines as [IL2, IL7, IL10, 
GCSF, IP10, MCP1, MIP1, and TNF] that are reasoned to 
increase the severity of infection.

COVID-19 variations according to age and sex

From the beginning of the outbreak of SARS-CoV-2 
in December 2019 in Wuhan, China, many press articles 
discussed the correlation between age and gender and 
susceptibility to COVID-19. So, to prepare this review, we use 
a published data about all confi rmed positive cases included 
the age and sex as showed in (Table 1). The data is from nine 
countries and cities Mainland China [31], South Korea [32], 
Japan [33], Philippines [34], Finland [35,36], California, USA 
[37], Italy [38], Czechia [39], and Estonia [40]. 

The age groups are classifi ed by using 10-years 
intervals: 0-9, 10-19, 20-29…., 70-79, and ≥ 80 years old. In 
addition to unknown cases, so the total of 10 age groups are 

designated. The sex groups are classifi ed into male, female, 
and unknown.

We analyzed the known data according to the age groups 
as in fi gure 1, according to sex groups as in fi gure 2 and 
according to the age and sex groups together as in fi gure 3. 

Telomere length in response to viral infection

Telomeres are repetitive elements at the ends of linear 
chromosomes that are essential for maintaining genomic 
stability [41,42]. Telomere repeats can be transcribed to 
make a non-coding RNA, Telomere Repeat-Containing 
RNA Termed (TERRA), that has been identifi ed in numerous 
organisms, and contributes structurally and functionally 
to telomere regulation [43,44]. TERRA can be induced in 
response to various types of stress [45,46], including DNA 
damage and viral infection.

Telomere length changes during DNA viral infection

DNA viral infections can activate a DNA Damage Response 
(DDR) signaling pathway similar to the chromosome 
double-strand break or an uncapped telomere [47]. In the 
same way as the telomere, viruses have many mechanisms 
to avoid the DDR, including the assembly of the protective 
complexes of viral DNA ends that can actively inhibit the 
cellular DDR [48]. Several acute nuclear DNA viruses and 
one RNA virus were found to increase TERRA expression 
[49]. Telomeres are responsive to various stress response 
pathways, including viral infection, reactive oxygen species 
[46], and DNA damage signaling [50]. Consequently, TERRA 
transcription can also be induced by p53 activation, thus, 

Table 1: Show all confi rmed positive cases in Mainland China, South Korea, Japan, Philippines, Finland, California, Italy, Czechia and Estonia.

Characteristics
Country/City

Mainland China South Korea Japan Philippines Finland California Italy Czechia Estonia

Till date February 11, 
2020 April 1, 2020 March 22,

2020
April 2,
2020 April 2, 2020 March 25,

2020
April 1, 
2020

July 13, 
2020

July 13, 
2020

Ages (year)

0 - 9 416 116 12 6 21
37 1,437

840 30

10 - 19 549 519 4 15 62 1159 78

20 - 29 3,619 2,682 84 206 228

1,505 26,489

1852 193

30 - 39 7,600 1,027 92 325 272 2219 263

40 - 49 8,571 1,323 142 329 299 2631 348

50 - 59 10,008 1,865 187 496 324

1,442 74,433

1552 426

60 - 69 8,583 1,245 171 543 160 1026 253

70 - 79 3,918 658 138 290 102 671 252

≥80 1,408 452 93 102 50 409 171

Unknown    323  22  815 

Sex

Male 22,981 3,946 520 1425 778 1,665 56,673 6497 685

Female 21,691 5,941 403 885 740 1,309 45,996 5862 812

Unknown    323  32  815 517

Total 44,672 9,887 923 2,633 1,518 3,006 102,669 13,174 2,014
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during viral infection remains unknown. In an experimental 
study, an association between shorter telomeres and upper 
respiratory viral infection was found [52]. CD8CD28 was the 
only cell population in which shorter telomeres were related 
to a higher risk of clinical illness like a viral infection, where 
the association between CD8CD28- telomere length and 
infection increased with age [53]. 

Telomere length changes during RNA viral infection

Viruses with single-stranded RNA, enveloped as 
(Togaviridae, Flaviviridae, and Coronaviridae) or non-
enveloped as (Astroviridae, Caliciviridae, and Picornaviridae) 
[54] can attack human cells at any time. Enveloped viruses 
(like coronavirus) the envelope fuses with the endosomal 
membrane, releasing viral genome into the host cytosol [55]. 
Although viruses can replicate in multiple types of cells, the 
pathological outcome manifests in only one or a few specifi c 
cell/tissue types [56]. Coronavirus infections usually start 
benign causing self-limiting mild fl u-like symptoms. 
Severe acute respiratory syndrome Coronavirus (SARS-
CoV), which jumped the species barrier through gaining 
slight genome mutations, are severe human pathogens [57]. 
SARS-CoV mainly infects lung cells stimulating an often-
fatal infl ammatory response, which is clinically called Acute 
Respiratory Distress Syndrome (ARDS) that begins with 
severe hypoxia, pulmonary edema progressing to systemic 
infl ammation, and failure of multiple organs, culminating 
in a high rate of mortality [58-61]. Shorter Peripheral Blood 
Leukocyte (PBL) Telomere Length (TL) is associated with 
higher mortality among patients with ARDS and more severe 
lung injury. Highly signifi cant positive associations between 
telomere length and lung function, shorter telomeres were 
seen in patients with lung function diseases compared with 
healthy patients [62]. 

The relation between RNA virus and TLR signaling

Pattern Recognition Receptors (PRRs) are the proteins, 
communicated by an assortment of cells, which are 
dependable for detecting the presence of microbial attack. 
The individuals of these receptor families can be recognized 
by ligand specifi city, cellular localization, and actuation 
of unique, but meeting, downstream signaling pathways 
[63]. PRRs are known to be activated by invasions of 
RNA viral infection. Toll-Like Receptors (TLRs) are the 
foremost broadly studied family of PRRs so far, and they 
are of considerable signifi cance within the initiation of an 
antiviral reaction upon disease. The human TLR multigene 
family comprises 10 individuals, of which TLR 2, 3, 4, 7, and 
8 are thought to be of importance within the recognition of 
basic components of RNA infections, counting viral double-
stranded RNA (dsRNA), single-stranded RNA (ssRNA), and 
surface glycoproteins [64].

Toll-Like Receptors (TLR) 7 and 8 are intracellular 
sensors found in endosomes that recognize single-stranded 
RNA. Both sorts of receptors induce the expression of pro-

Figure 1 Age Groups. Pie chart of the age of known, confi rmed, and positive 
cases in Mainland China, South Korea, Japan, Philippines, Finland, California, 
Italy, Czechia and Estonia.

Male 
52%

Female 
48%

Sex

Male Female 

Figure 2 Sex. Pie chart of the sex of known, confi rmed, and positive cases 
in Mainland China, South Korea, Japan, Philippines, Finland, California, Italy, 
Czechia and Estonia.

Figure 3 Age and Sex. Pie chart of the (≥50) years old infected known, 
confi rmed, and positive cases in Mainland China, South Korea, Japan, 
Philippines, Finland, California, Italy, Czechia and Estonia.

binding sites for p53 have been identifi ed in human sub-
telomeres by Chip-Seq [51]. While TERRA can be induced 
to high levels in response to various stresses including 
DNA damage and viral infection, its potential function 
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infl ammatory cytokines and sort I IFN reaction upon RNA 
viral infection sensing [65,66]. TLR7 and TLR8 activated 
diff erential signaling cascades that contributed to the 
particular phenotypes observed. It has been found that FOSL1 
restrained sort 1 cytokines after TLR7 signaling and revealed 
the part of TLR7-dependent Ca2+ fl ux in modulating sort I 
IFN reactions. It is illustrated that although both TLR7 and 
TLR8 recognize single-stranded RNA, they activated diverse 
signaling pathways in human monocytes that contribute 
to particular phenotypes during RNA infection disease. In 
addition, it is characterized by individual targets inside 
these pathways that advanced particular T helper and 
antiviral reactions [67]. TLR7 activation induces a Th17-
polarizing phenotype whereas TLR8 incitement actuates 
a Th1-polarizing phenotype on human CD14+ monocytes. 
The diverse eff ects of TLR7 and TLR8 inhibition on pro-
infl ammatory cytokine expression and sort I IFN responses 
led to hypothesize that TLR-7 and TLR-8 incitement initiate 
distinctive functional phenotypes on CD14+ monocytes. To 
test this speculation, Imiquimod (IMQ) has been chosen 
as a human TLR7-specifi c ligand and ssRNA40-LyoVec 
(ssRNA40) as a human TLR8-specifi c ligand and stimulated 
ex vivo confi ned CD14+ monocytes with them to examine the 
expression of pro-infl ammatory cytokines [68]. 

Telomere length and telomerase activity

An important type of proteins related to telomere is 
called Telomerase Reverse Transcriptase (TERT), which 
is encoded by the “Tert” gene that specifi cally recognizes 
the 3′-OH group at the end of G-rich strand overhang. This 
arrangement is decided by the action of telomerase, which 
lengthens terminal regions of eukaryotic telomeric DNA by 
RNA-templated addition of the repeated DNA arrangement. 
Complete replication of telomeric DNA requires telomerase 
[41]. This polymerization activity was then appeared to 
happen on natural telomeres in vivo which initially called 
‘telomere terminal transferase [69]. Telomerase could be 
a specialized cellular RT. It is a Ribonucleoprotein (RNP) 
complex, it synthesizes one strand of the telomeric DNA 
- namely, the strand running 5 to 3 towards the distal 
end of the chromosome—by replicating a short format 
arrangement inside its natural RNA moiety. This activity 
extends the 3 terminal, single-stranded overhang found at 
the closes of telomeric DNA [70]. Several Studies reported 
the link between oxidative stress and telomere shortening. 
Telomerase neutralizes telomere shortening and cellular 
senescence in germ, stem, and cancer cells by including 
repetitive DNA arrangements to the ends of chromosomes 
[71]. 

C-reactive protein

C-Reactive Protein (CRP) is a pentameric protein 
circulating in blood plasma which is a marker of infl ammation 
[72], besides, being a member of the pentraxin family of 
proteins [73]. CRP is synthesized by the liver in reaction 
to components discharged by macrophages and fat cells 

(adipocytes) [74]. There are various causes of a raised CRP. 
These include acute and chronic conditions, and these can 
be infectious or non-infectious in etiology [75]. However, 
markedly elevated levels of CRP are most often associated 
with infectious causes like respiratory viral Infection. CRP 
reaches an abnormal level in patients tested positive to 
respiratory viral infection. An obvious increase in CRP level 
was noted during specifi c respiratory viral infections with 
more prominent increases observed in elderly patients [75]. 
CRP inversely correlates with leukocyte telomere length 
[71]. Hence, during respiratory viral infections, leukocyte 
telomere length becomes shorter. 

Pro-in lammatory cytokines

Infl ammation is one of the complex biological responses 
by the immune system to neutralize the damages caused 
either by injury or microbial infection. Pro-infl ammatory 
cytokines are produced mostly by the activated macrophages 
and are involved in the up-regulation of infl ammatory 
reactions such as interleukins (IL-1, IL-6) and TNF- [76]. 

Interleukins (ILs) are a type of cytokines that play 
essential roles in the activation and diff erentiation of 
immune cells. They also have pro-infl ammatory and anti-
infl ammatory properties [77]. Interleukins consist of a 
large group of proteins that can get many reactions in cells 
and tissues by binding to high-affi  nity receptors on cell 
surfaces [78]. One of ILs is called Interleukin-6 (IL-6) that 
is synthesized by T and B lymphocytes, fi broblasts, and 
macrophages [79]. IL-6 is a pleiotropic cytokine produced in 
response to tissue damage and infections. IL-6 is increasing 
at the site of infl ammation and plays a key role in the acute 
phase response [80]. Shorter telomeres are associated with 
higher IL-6 [81]. Increasing the production of cytokines 
has been shown to adversely aff ect telomerase activity and 
telomere length [82]. An experimental study showed that 
STAT3 was synergistically activated by IL-6 and TNF-. 
STAT3, STAT1, and NF-B formed triplet complexes with 
IL-6 and TNF- stimulation, thereby increasing telomerase 
activity by binding to hTERT promoter more tightly [83]. 
Cell-level invasion assay revealed that cytokine treatments 
contributed to the cell invasiveness. Combined treatment 
of IL-6 and TNF- synergistically phosphorylated 
transcription factors STAT3 [84]. STAT3, STAT1, and NF-b 
physically interacted upon the cytokine stimulation. STAT3 
was bound to the promoter region of hTERT. IL-6 and TNF- 
stimulation further enhanced STAT3 binding affi  nity and 
increase the activity of telomerase [85]. The immune system 
dysfunction/accelerated maturing observed in chronic 
conditions are associated with telomeres and telomerase 
activity. Numerous analysts documented relationships 
between lower telomerase activity and/or shorter telomeres 
in immune system cells and raised cytokines in blood serum 
from patients with a chronic disorder. 

Reactive oxygen species

Several Studies reported the link between oxidative 
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stress and telomere shortening. Telomerase neutralizes 
telomere shortening and cellular senescence in germ, stem, 
and cancer cells by including repetitive DNA arrangements 
to the ends of chromosomes. Telomeres are susceptible to 
damage by Reactive Oxygen Species (ROS) [86]. Based on in 
vitro studies, ROS have been proposed to inhibit telomerase 
activity [87,88].

CONCLUSIONS
During the last years, many studies have continually 

provided evidence that links shortened telomeres with 
common respiratory viral diseases, infection risk, and 
longevity. Telomeres were considered as a potential 
biomarker that could evaluate the susceptibility to a specifi c 
pathogen as SARS-COV-2. The previous studies also 
provided an association between sex and telomere length, 
especially in leukocyte. Many studies on adults have found 
that the female telomere length is longer than the male 
ones, and one study explained that female newborns have 
longer telomeres than males. Males were somewhat more 
susceptible to infection than females this may due to greater 
telomere attrition in males than females. 

According to the reviewed data, we found that: (1) 52% of 
total infected cases are males, and 48% of total infected cases 
are females; (2) 62% of total infected cases are (≥ 50) years 
old; (3) approximately 53% of (111,428) infected cases (≥ 50) 
years old are males, and 47% of (111,428) infected cases (≥ 
50) years old are females. The previous results approve that 
elder males are the most susceptible to COVID-19 infection. 

Patients have COVID-19 show an increase in leukocyte 
numbers, and increased levels of plasma pro-infl ammatory 
cytokines as IL-1, IL-6, and TNF- in blood and an 
elevation in the production of cytokines has been shown to 
adversely aff ect telomerase activity and telomere length. For 
example, shorter telomeres are associated with higher IL-6. 
CRP rises to an abnormal level in patients tested positive to a 
respiratory viral infection and CRP inversely correlated with 
leukocyte telomere length. Unfortunately, there is a lack of 
data that discussed the relationship between telomerase 
activity and CRP. All markers of infl ammation provide the 
relation between telomere length and COVID-19 infection.
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