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Introduction
Stem cell therapy for the treatment of heart failure in patients not 

adequately responding to optimized heart failure medication is currently 
being studied in clinical trials, with the hope of improved heart function 
and quality of life. BioCardia was granted FDA Breakthrough Designation 
for its Phase III trial of CardiAMP® Cell Therapy for the treatment of Heart 
Failure with reduced Ejection Fraction (HFrEF). Unfortunately, BioCardia’s 
phase 3 trial one-year follow-up failed to reach its endpoint, which has 
dampened enthusiasm for HFrEF stem cell treatment. The CardiAMP-
HF Trial studied 125 ischemic heart failure patients with reduced 
ejection fraction enrolled at 18 centers in the United States and Canada. 
All patients were maintained on heart failure medication, the treatment 
group receiving a single dose of CardiAMP Cell Therapy - autologous bone 
marrow cells delivered by transcatheter, intracoronary technique. The 
primary endpoint of the study - the all-cause of death, including cardiac 
death equivalents- failed to show any benefi t. The treated group reported 
a 5.6% rate of all-cause death and cardiac death equivalents after one year, 
compared to 5.3% in the control group. Moreover, nonfatal major adverse 
cardiac events were similar in the two cohorts, with 16.7% in the treatment 
group versus 15.8% in the control, and there was no diff erence between 
the two groups in the Six-Minute Walk test distance. BioCardia concluded 
that the current phase III study was unlikely to succeed, given the failure 
of the bone marrow cell therapy to signifi cantly improve outcomes on any 
aspect of the composite endpoint of the trial.

However, subgroup analysis of those patients with elevated Brain 
derived Natriuretic Peptide (BNP) showed decreased mortality and 
major adverse cardiac and cerebrovascular events, improved quality 
of life, a modest improvement in left ventricular ejection fraction, and 
an improvement  in the Six Minute Walk Distance.  In a not surprising 
turn, BioCardia has initiated patient enrollment for a CardiAMP HF II 
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Study. The new study will focus on the subgroup of 
patients suff ering from active heart stress (those with 
elevated NT-proBNP biomarker). BioCardia’s trial 
illustrates the primary importance of selecting the 
subpopulation of cardiomyopathy patients likely to 
respond favorably to stem cell therapy. The Biocardia 
study showed more signifi cant improvement in 
patients with elevated BNP biomarkers. BNP occurs 
in response to increased ventricular wall strain and to 
volume overload, and elevations of BNP characterize 
up to 90% of patients with Dilated Cardiomyopathy 
(DCM).   

As the most common form of non‐ischemic 
cardiomyopathy worldwide, DCM may be a more 
favorable candidate population for stem cell therapy.  
With an estimated prevalence of 1 in 2500 persons, 
DCM is defi ned by dysfunction of the left or both left 
and right  ventricles, with dilation of the ventricular 
walls. The prognosis is extremely poor. DCM is a 
leading cause of the need for heart transplantation 
in adults [1]. Despite improved medical treatment, 
there is a trend towards worsening of left ventricular 
function [2]. Systematic reviews have demonstrated 
benefi cial therapeutic eff ects of adult bone marrow-
derived stem cells for non-ischemic DCM, in terms 
of improved systolic function and mortality [3,4]. 
Other reviews report improvement of left ventricular 
ejection fraction, end systolic and end diastolic 
volume in DCM, but caution that the ultimate clinical 
implications of these improvements are uncertain 
[5-7]. There have been no concerns as to the safety of 
stem cell treatments [8,9].  

  The histopathology of DCM is a prototypical 
infl ammatory condition, manifesting the full 
spectrum of immune response. Both resident 
and recruited infl ammatory cells- including 
macrophages, dendritic cells, granulocytes, B and T 
cells, and NK cells - release cytokines, including IL-
1β, IL-18, IFN-γ, and TNF-β-promoting a remodeling 
of the extracellular matrix, collagen deposition, 
impaired contractility, damaged endothelial function 
and left ventricular enlargement. Cardiomyocyte 
injury and the immune cascade that follows 
ischemia reperfusion injury result in the infi ltration 
of infl ammatory cell populations, scar formation, 
fi brosis and a post-procedure death rate of 7-15% 
[10]. The development of DCM may result from 
chronic progressive infl ammatory response that 
leads to remodeling of myocardial tissue and fi brosis 
due to autoimmune disease and viral myocarditis [11]. 

The important unanswered question in the 
BioCardia study is whether the molecular biology 
of the stem cell type is optimal for the specifi c 
pathophysiology being treated. There remains a lack 
of clarity regarding the relative effi  cacy of cell type, 
donor origin, or patient selection in terms of the 
chronicity of ischemia or the type of cardiomyopathy. 
Specifi c attributes of the molecular biology of one 
cell type might a priori suggest improved effi  cacy. 
Some cell types might be optimal for the treatment of 
conditions with underlying infl ammation, ischemia, 
and fi brosis.

Decreasing cardiac fi brosis by CXCL8 attraction 
of NK cells 

Angiogenic precursor cells (ACP-01 cells, 
Hemostemix Corp), are peripheral blood derived 
angiogenic progenitor cells off ering a compelling 
treatment of infl ammatory disorders such as DCM 
through attraction of Natural Killer (NK) cells (Figure 
1). ACP-01 express high levels of CXCL8 [5], which 
exhibits chemokine activity toward spatially distant 
NK cells [12]; the CXCR1 and CXCR2 receptors on 
NK cells are highly specifi c to the ligand chemokine 
CXCL8 [13]. NK cells are a part of the innate lymphoid 
cell (ILC) population. NK cells stifl e collagen 
production in cardiac fi broblasts, and inhibit the 
assembly of infl ammatory cells in the heart [14]. 
Suppression of NK cells is associated with DCM. When 
NK cells are depleted, cardiac eosinophil infi ltration 
occurs. NK-derived IFN-γ decreases the deleterious 
eff ect of eosinophils on the myocardium by reducing 
local eotaxin concentrations, and reducing the ability 
of eosinophils to migrate to the heart. NK cells 
isolated from healthy human peripheral blood induce 
the activation and apoptosis of eosinophils, and 
prevent the accumulation of certain infl ammatory 
populations in the heart. NK cell infi ltration into the 
myocardium is maximal at 7 days after ischemic injury 
and militates against cardiac fi brosis by limiting 
collagen formation in cardiac fi broblasts [14,15]. 

NK cells expressing IFNγ and other mediators 
create an anti-infl ammatory environment, limiting 
fi brosis through down regulation of eosinophils 
and other pro-fi brotic cell types. Murine studies 
have demonstrated reduction in cardiac myocyte 
apoptosis and collagen formation, and increase in 
neovascularization due to expansion of NK cells after 
bone marrow cell transfers to the heart following 
myocardial infarct [16].  
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DCM may result from a viral infection.   Serving 
in the fi rst line of defense against many intracellular 
pathogens,   NK cells prevent viral replication by 
detecting and destroying infected resident cells. NK 
cells suppress infl ammation through modulation of 
immune cell physiology directly through receptor-
ligand interactions, and indirectly by cytokine 
secretion. NK cells are responsible for the initial 
production of type I interferons, such as IFN-α, 
IFN-β, and IFN-γ, which initiate the anti-viral 
infl ammatory cascade, and suppress  release of T 
Helper 2 (Th-2) cytokines, decreasing infl ammation 
[11]. NK cell cytokine release may aff ect alteration of 
T Helper subtypes, direct contact-mediated lysis of 
auto-aggressive T cells, and accelerate maturation of 
monocytes and dendritic cells [17,18]. Through their 
ability to produce IFNγ and express the transcription 
factor T-bet, NK cells are important in maintenance 
of tissue homeostasis [19]. ACP-01 attract NK cells 
to the sites of repair and thus modulate the immune 
infl ammatory response to injury. 

Angiogenesis 
The molecular biology of ACP-01 optimizes 

microcirculation through angiogenesis. ACP-01 
are specifi cally programmed to form endothelial 
cells and tube-like structures, and to express tissue 

regeneration factors VEGF and angiogenin, which 
promote angiogenesis [20]. ACP-01, through 
expression of high levels of CXCL8, enhance 
angiogenesis through Ras-MAPK/PI3K activation and 
the AP-1/NF-kB axis, promoting the proliferation, 
growth, and viability of vascular endothelial cells 
[5,21-23]. 

ACP-01include cells with the CD34 + surface 
cell marker. CD34+ stromal cells are essential 
to angiogenesis, participating in cell migration, 
control and organization of the extracellular matrix, 
scaff olding, immunomodulation, neurotransmission, 
control and regulation of other cell types and 
regeneration [24]. Sprouting angiogenesis requires 
migration of endothelial cells, alteration of the 
extracellular matrix, proliferation of endothelial 
cells and mobilization of the perivascular CD34+Stem 
Cells. The CD34+ stem cells in ACP-01 are of primary 
importance in the process of angiogenesis and 
improved microcirculation [25,26]. However,  ACP-01 
increased expression of  CXCL8 results in mobilization 
of peripheral  CD34+ precursor cells to amplify the 
angiogenic response [27].  Improved microcirculation 
minimizes the area of ischemic myocardium, rescuing 
penumbra and lessening dysfunctional macroscopic 
remodeling of the surrounding non-ischemic 
myocardium [28,29].

Created in BioRender. Tuchman, K. (2025) https://BioRender.com/6rfoaiv

Figure 1 ACP-01 potentiate healing in heart failure through secretion of tissue regeneration factors such as VEGF, angiogenin and the chemokine IL-8 (CXCL8), 
promoting cell migration and angiogenesis in ischemic tissues.  CXCL8 attracts NK cells, which release anti-infl ammatory cytokines and help repair damaged 
tissues.
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Autologous cells are not subject to cell-to-cell 
interactions 

As an autologous treatment, ACP-01 are not 
subject to cell-to-cell interactions [30,31], MHC 
incompatibilities, or immune rejection from 
alloreactive antibodies [32]. Moreover, autologous 
hematopoietic derived stem cells – such as ACP-
01- have more prolonged survival than allogeneic 
cells [33]. The production and sorting method of 
highly specifi c hematopoietic progenitor cells, 
such as autologous ACP-01, results in fewer of the 
heterogeneous cell populations, which can negatively 
aff ect therapeutic results [34]. Fresh autologous cells 
may be more eff ective than stored cells [35].

Cell Migration 
Finally, ACP-01 minimize ischemic injury to the 

myocardium through cell migration. Endothelial 
cell precursors express high levels of CXCR4, which 
is strongly attracted to chemokines released from 
injured or ischemic tissue, specifi cally the CXCL12 
chemokine. This  CXCR4/CXCL12 axis results in robust 
migration and embedding of transplanted ACP-01 
into injured myocardium [36]. Continuous passage 
of mesenchymal stem cells during preparation 
may  result in decreased expression of chemokine 
receptors CXCR2/4; on the other hand, the ACP-01 
do not undergo division and multiplication during 
preparation, the consequence of which is increased 
demonstration of high expression of CXCR4 receptors 
[37] and increased homing ability [36]. Embedded 
ACP-01 support tissue survival through paracrine 
eff ect.

Conclusion 
Failure of large randomized, multi-institutional 

studies may be due to the inability to select the 
appropriate subgroup of patients who are most 
likely to benefi t from stem cell treatment, and from 
failure to select the optimal stem cell for the specifi c 
pathology. Hematopoietic derived stem cells, such as 
ACP-01, which include the subpopulation of CD34+ 
cells, are programmed for angiogenesis.  Expression 
of high levels of CXCL8 is of particular importance, 
moreover, in the attraction of immunomodulatory 
NK cells, and their ability to inhibit infl ammation 
and stromal fi brosis. These characteristics, and the 
homing qualities of the ACP-01, contribute to the 
consistently demonstrated signifi cant improvements 
of cardiac function in patients treated with ACP-01 

[5,38].  Based upon the excellent results previously 
published on a cohort of patients treated with ACP-
01 for cardiomyopathy [5]; Hemostemix is presently 
planning a phase 1 clinical trial for non-ischemic 
DCM.
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